ATI C16 Chlorine Sensor Module (20 PPM)

ATI C16 Chlorine Sensor Module (20 PPM)


Chlorine sensor module, 0-5/200 (20 PPM Standard)

Free Shipping on this product
Your Price
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?
Image Part # Product Description Price Stock Order
ATI C16 Chlorine Sensor Module (20 PPM) 00-1003 Chlorine sensor module, 0-5/200 (20 PPM Standard)
Drop ships from manufacturer

ATI C16 Chlorine Sensor Module (20 PPM) Reviews

| Write a Review

Be the first to write a review

Related Products

In The News

Collaborative Southeast Nexus study examines region's air quality

While much of the world has experienced a warmer climate in recent years, the U.S. Southeast has cooled. Scientists want to know why because the answer could reveal keys to improving air quality and understanding climate change. To study the cooling Southeast, scientists at several institutions have joined forces to conduct the Southern Atmosphere Study (SAS), the largest study on southeastern U.S. air quality since the 1990s. These include the U.S. Environmental Protection Agency, National Center for Atmospheric Research, National Science Foundation, National Oceanic and Atmospheric Administration and the Electric Power Research Institute. Five air quality studies fall under the SAS umbrella.

Read More

Hydrogen Sulfide Monitoring - US Army Corps of Engineers

Project Overview NexSens field engineers installed hydrogen sulfide monitoring systems with real-time radio telemetry at several reservoirs in northeast Ohio, where many of the reservoirs have become problem areas for emitting H2S gases as a result of improper restoration of strip-mined land prior to the Surface Mining Control and Reclamation Act of 1977. Hydrogen sulfide (H2S), a colorless, flammable gas that smells like rotten eggs, is a hazardous substance to both people and the environment. When exposed to even low levels of hydrogen sulfide gas, people can experience eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs.

Read More

White Bear Lake Stands Out In Study Of Twin Cities Lakes

Following water level declines in lakes around the Twin Cities area of Minnesota, scientists at the U.S. Geological Survey were interested in identifying the cause. What they found along with that was a large degree of variability between the lakes, based on geology, elevation and land use. That there was such variation isn’t too surprising, as Mother Nature is far from neat in laying things out. But the sheer size and scope of the study has a nice way of underscoring just how different individual lakes can be from one another even if they sit nearby. The effort, looking at 96 different lakes around Minneapolis and St. Paul, Minn., found wide variation in water levels over time. Some lakes gained in water levels while others nearby saw them decline.

Read More