ATI Q46P/R pH/ORP Monitor

ATI Q46P/R pH/ORP Monitor


ATI's versatile Q46P/R pH/ORP monitors feature rugged differential-style sensors designed for use in industrial and municipal applications.


  • Optional Auto-Cleaner removes build-up on the sensor, reducing sensor maintenance
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?


Measurement and control of pH is important in a wide variety of industries. Water and wastewater, boiler feed water, high purity water, food processing wash water, chemical plant cooling water, and many other aqueous systems require reliable pH monitoring.
ATI’s Model Q46P pH monitor provides the combination of durability, accuracy, and versatility required for virtually any pH monitoring or control application. The Model Q46R provides the same reliable monitoring for Oxidation-Reduction Potential (ORP) applications.
ATI’s Q46 platform represents our latest generation of monitoring and control systems. Control features have been expanded to include an optional 3rd analog output or an additional bank of low power relays. Digital communication options now include Profibus IP, Modbus RTU, or Ethernet IP variations.

Image Part # Product Description Price Stock Order
ATI Q46P/R pH/ORP Monitor Q46P/R pH/ORP monitor Drop ships from manufacturer

ATI Q46P/R pH/ORP Monitor Reviews

| Write a Review

Be the first to write a review

In The News

Figuring Out How Microplastics Move From Mussels To Fish

Microscopic beads and fabrics float in our waterways, get ingested by fish and other creatures, and impact the environment in lots of negative ways. But despite that knowledge, there is little we know about how these microplastics first enter aquatic food webs. In a pilot study, researchers at the University of Notre Dame are studying the dynamics of just how microscopic plastics are first transferred from filter feeders to fish. Their investigation is using asian clams and sculpins to pinpoint the interactions underway. The researchers originally wanted to use round gobies, a prolific invasive fish in Lake Erie.

Read More

Imaging Foraminifera Shell Formation Clarifies Sediment Samples

In sediment samples taken throughout the world’s oceans, researchers key on shell fragments from single-celled organisms to learn more about the history of an area’s chemistry. But surprisingly little is known about how these organisms form their shells in the first place. In a bid to alleviate some uncertainty, scientists at the University of Washington have imaged some of the actions that take place. As a starting point, the researchers have zeroed in specifically on the time period during which single-celled organisms first start to form their shells. The researchers caught juvenile foraminifera by diving in deep water off Southern California. They then raised them in the lab, using tiny pipettes to feed them brine shrimp during their weeklong lives.

Read More

ROV Yogi Gets Underway In Yellowstone Lake

Earlier this year, we covered a work in progress to build a new remotely operated vehicle (ROV) for Yellowstone Lake . It was just an idea back then, but the exploratory craft has since become a reality thanks to some determined researchers and a Kickstarter campaign that reached a goal of $100,000 in funding. Full cost for building the vessel was around $500,000, but crowdfunding a portion of it allowed officials at the Global Foundation for Ocean Exploration (GFOE), a nonprofit engineering group, to spur public interest. In a similar vein, they named the completed ROV “Yogi” in honor of the famous fictional comic book character devised by Hanna-Barbera who gets into trouble at Yellowstone National Park.

Read More