Q46/88

ATI Q46/88 Suspended Solids Monitor

ATI Q46/88 Suspended Solids Monitor

Description

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications.

Features

  • Uses backscatter to allow solids measurements at much higher levels
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications. A submersible sensor immersed in process tanks or effluent channel senses particulates in the water using an optical backscatter technique that allows measurement over a wide range. Results are displayed on the Q46 electronic unit mounted near the sensor with a variety of outputs provided as standard.

Monitoring suspended solids in wastewater and industrial process water can be useful for  either process control or for alarming of unusual conditions. In biological treatment systems, monitoring suspended solids in the aeration tank can assist operators in maintaining optimum MLSS (Mixed Liquor Suspended Solids) concentration. In industrial clarifier's, suspended solids water quality monitoring can warn of upset conditions that might result in the discharge of solids that exceed plant permits.

Suspended solids sensors are optical devices operating in the infrared region. Unlike turbidity sensors that use 90 degree scatter to optimize sensitivity, suspended solids sensors use “backscatter” to allow solids measurements at much higher levels. Operation with infrared light ensures very long sensor life and minimizes the effects of changing sample color.

Sensors are designed to withstand the rigorous conditions of wastewater and industrial process streams and to last for years of service with nothing more than occasional cleaning of the sensing surface. There are no protruding surfaces near the sensing element to avoid accumulation of fibrous materials. The sensor is simply pipe mounted using mounting adapters available from ATI.

Optical sensors used for monitoring biologically active systems such as aeration tanks or aerobic digestors will require periodic cleaning to maintain the integrity of the measurement. Biological slime deposited on the optical surface will degrade the ability to transmit IR light into the sample. The frequency of cleaning varies widely depending on the turbulence in the process. Course bubble diffusion systems tend to scour the sensor while fine bubble diffusion systems result in more rapid sensor fouling.
 
Cleaning can be done manually by simply wiping the sensor as needed, but ATI also offers an automatic air-blast cleaning system as an option. The “Q-Blast” air cleaning system is controlled by the Q46/88 Suspended Solids Monitor and provides a compact air compressor system that periodically applies pulses of compressed air across the optical surface to remove accumulated biofouling. This system greatly reduces the requirement for manual maintenance, with cleaning frequency programmed to occur as often as necessary.

Image Part # Product Description Price Stock Order
ATI Q46/88 Suspended Solids Monitor Q46/88 Suspended solids monitor Usually ships in 1-2 weeks

In The News

Can Better Technologies Save Endangered California Salmon?

Up until the 1800s, salmon were so plentiful in California that these “ bits of silver pulled out of the water ” could be observed ascending the waterways, thousands at a time, each season. However, decades of logging, the construction of dams, and other human interventions have changed the waterways of the state so significantly that the range of the salmon has been permanently altered. Now, a team of scientists collaborating through the Interagency Ecological Program have developed a plan to improve salmon management and, hopefully, help save the species. Team members from NOAA Fisheries, the California Department of Water Resources, the U.S. Fish and Wildlife Service, the California Department of Fish and Wildlife, the U.S. Bureau of Reclamation, and the U.S.

Read More

Weather Extremes Shaking Up Fouling Communities in Urban Estuaries

Marine fouling species may seem to be lowly creatures, situated toward the bottom of that portion of the food chain animals comprise. However, these filter-feeding invertebrates that make their homes on hard underwater substrates such as the hulls of ships are among some of the most successful invasive species. Their secret is simply their ability to latch onto human vehicles and survive. Now, new research on the fouling community in the San Francisco Bay indicates that a single wet winter and the change in salinity that high levels of precipitation bring can knock back the advance of these hearty creatures. Marine biologist Andrew Chang of the Smithsonian Environmental Research Center’s Tiburon, California branch published this new research in December of 2017.

Read More

Fragile Water Infrastructure, Often On the Verge of Collapse

Do you know what's in your water? How certain are you that it's safe? In mid-December 2017, researchers from across the United States specializing in various disciplines came together at the annual meeting of the Society for Risk Analysis to present reports on a range of problems in American water infrastructure. This plumbing safety research illuminates a disturbing litany of failures in water safety all over the country—but also highlights a commitment to fixing problems and taking a proactive approach to keeping water infrastructure safer. The Replacement Era In 2001, the American Water Works Association (AWWA) released a report entitled, “Dawn of the Replacement Era: Reinvesting in Drinking Water Infrastructure.

Read More