Q46/88

ATI Q46/88 Suspended Solids Monitor

ATI Q46/88 Suspended Solids Monitor

Description

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications.

Features

  • Uses backscatter to allow solids measurements at much higher levels
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications. A submersible sensor immersed in process tanks or effluent channel senses particulates in the water using an optical backscatter technique that allows measurement over a wide range. Results are displayed on the Q46 electronic unit mounted near the sensor with a variety of outputs provided as standard.

Monitoring suspended solids in wastewater and industrial process water can be useful for  either process control or for alarming of unusual conditions. In biological treatment systems, monitoring suspended solids in the aeration tank can assist operators in maintaining optimum MLSS (Mixed Liquor Suspended Solids) concentration. In industrial clarifier's, suspended solids water quality monitoring can warn of upset conditions that might result in the discharge of solids that exceed plant permits.

Suspended solids sensors are optical devices operating in the infrared region. Unlike turbidity sensors that use 90 degree scatter to optimize sensitivity, suspended solids sensors use “backscatter” to allow solids measurements at much higher levels. Operation with infrared light ensures very long sensor life and minimizes the effects of changing sample color.

Sensors are designed to withstand the rigorous conditions of wastewater and industrial process streams and to last for years of service with nothing more than occasional cleaning of the sensing surface. There are no protruding surfaces near the sensing element to avoid accumulation of fibrous materials. The sensor is simply pipe mounted using mounting adapters available from ATI.

Optical sensors used for monitoring biologically active systems such as aeration tanks or aerobic digestors will require periodic cleaning to maintain the integrity of the measurement. Biological slime deposited on the optical surface will degrade the ability to transmit IR light into the sample. The frequency of cleaning varies widely depending on the turbulence in the process. Course bubble diffusion systems tend to scour the sensor while fine bubble diffusion systems result in more rapid sensor fouling.
 
Cleaning can be done manually by simply wiping the sensor as needed, but ATI also offers an automatic air-blast cleaning system as an option. The “Q-Blast” air cleaning system is controlled by the Q46/88 Suspended Solids Monitor and provides a compact air compressor system that periodically applies pulses of compressed air across the optical surface to remove accumulated biofouling. This system greatly reduces the requirement for manual maintenance, with cleaning frequency programmed to occur as often as necessary.

Image Part # Product Description Price Stock Order
ATI Q46/88 Suspended Solids Monitor Q46/88 Suspended solids monitor Usually ships in 1-2 weeks

In The News

Targeting Spawning Bass: Are They Going to Bite?

This time of year, anglers all over are fishing for bass they can see in the shallows. Some bass will be easy to catch and some are nearly impossible, like those that are in the act of spawning instead of just guarding their beds. There are a few things that I do to determine if the fish is going to bite and if they are worth spending time fishing for. Locating Bedding Bass One of the best ways to find bedding bass is to cruise the shallows with your trolling motor at about 40 or 50%. I have found that this is the best speed to both cover water and avoid spooking fish. Anything faster will scare fish away long before you get to them.

Read More

Researchers Find Link Between Climate Change and Gastrointestinal Illnesses

An understanding of climate change’s effects on the environment has become commonplace and grows every day, but one researcher from Florida State University is looking to answer a new question: What are climate change’s effects on people’s health? In one of the first studies of its kind, Chris Uejio, an assistant professor at FSU, and a team of researchers studied how climate change can affect the roughly 20 million Americans (according to the Environmental Protection Agency) who consume untreated drinking water on a daily basis. Because climate forecasts are predicting higher rainfall rates over the next few decades, coming down in intense storms, Uejio said those flashes could cause flare-ups in waterborne illnesses.

Read More

Data Buoys Infographic

We put together this infographic on data buoys for our Spring 2017 edition of the Environmental Monitor ( PDF available online ). Organizations across the globe use data buoy systems to observe and monitor atmospheric and oceanographic conditions in remote locations. Measurements range from air pressure, humidity, wind speed and direction to wave height, water temperature, dissolved oxygen and other water quality parameters. With the help of national and international networks, reliable and comprehensive data sets are made available for research and public safety.

Read More