Q46D

ATI Q46D Dissolved Oxygen Monitor

ATI Q46D Dissolved Oxygen Monitor

Description

DO monitoring in wastewater aeration systems, effluent channels, or natural waters are easily handled by the Q46D on-line monitoring instrument.

Features

  • Optional Auto-Cleaner removes build-up on the sensor membrane, reducing sensor maintenance
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Dissolved Oxygen monitoring is critical for aeration system process control.  Optimization of the biological process, whether it’s removal of organic material, nitrification, or nitrification/denitrification, depends on maintaining proper D.O. levels.  Controlling air flow to within the optimal range eliminates excess aeration which translates into significant energy savings.
 
ATI’s Model Q46D Dissolved Oxygen Monitor is designed to provide reliable oxygen measurement and help reduce operating costs.  Two types of sensing technologies are available for use with the Q46D system:  Membraned Electrochemical and Optical (fluorescence).  Both sensors will provide reliable long-term performance with minimal maintenance.  No hardware modifications are required to change from one sensor type to the other.  The monitor can be configured for AC or DC power supplies, and a portable battery-powered unit is available to meet a variety of monitoring needs.

When process conditions require frequent sensor cleaning, our unique Q-Blast Auto-Cleaner can be used to keep the system operating nearly maintenance free.  This time-proven system has been instrumental in providing years of worry free operation.

Image Part # Product Description Price Stock Order
ATI Q46D Dissolved Oxygen Monitor Q46D Dissolved oxygen monitor Drop ships from manufacturer

Questions & Answers

| Ask a Question
What is the Q-Blast option?
The Q-blast is an option that allows the sensor to be cleaned without a visit to the field site. Pulses of pressurized air is delivered through a nozzle at the tip of the sensor to remove accumulated solids from the critical sensing surfaces. Cleaning frequencies can be set depending on fouling and usage needs.
How often does the optical sensor disk need to be replaced?
The disk has a life of 2-5 years depending on usage.
Can I switch between optical and membrane type sensors?
Yes, no hardware modifications are required to switch between sensor types.

In The News

The Arizona Department of Environmental Quality's Water Quality Division

With an average rainfall of only 12.5 inches per year and a population that's growing faster than the country's , Arizona is a state that faces unique challenges, especially when it comes to clean, safe water. The Water Quality Division of the Arizona Department of Environmental Quality (ADEQ) protects and enhances public health and the environment by monitoring and regulating drinking water. And although they make use of the latest scientific methods and new technology, given the current state of Arizona's water system, they also rely upon low-tech equipment and cooperation from members of the community to monitor water quality in the state. Team members in the Groundwater Protection Program work to sample, test and characterize groundwater quality in all 51 of Arizona’s basins.

Read More

Latest Satellite and Eddy Covariance Data Shows Vulnerability of Trees to Drought

William Anderegg, assistant professor of biology at the University of Utah, has spent years studying drought-stricken trees all over the world. As climate change is expected to cause increased drought severity in the future, the work of Anderegg and his colleagues becomes increasingly important. In a previous interview for the Environmental Monitor , Anderegg found that a tree’s hydraulic safety margin was the best indicator of whether a tree would survive drought. The hydraulic safety margin is an expression of how the tree reacts under drought conditions, where there is very little water being pulled up the tree’s transport system and air is being pulled up instead. “It’s like a heart attack for the tree,” he noted.

Read More

A Balancing Act In The Grand Canyon: The High Flow Experiments

You've probably heard of the Four Corners region of the United States; that's where the corners of Arizona, New Mexico, Utah and Colorado meet at one point. These same four states are also part of the Colorado River Storage Project (CRSP), which began to change the face of the American West in 1956, enabling the population explosions in places like Phoenix and Los Angeles to continue thanks to usable water. Glen Canyon Dam is 220 meters high and 480 meters wide, and this massive structure has changed this section of the Colorado River all the way to Lake Mead dramatically. It has also increased low-flow magnitudes, decreased peak flow magnitudes and volumes and caused fluctuations in daily discharge levels that the area relies upon for generation of hydroelectric power.

Read More