ATI Q46F/D Direct Fluoride Monitor

ATI Q46F/D Direct Fluoride Monitor


ATI's Model Q46F/D Direct Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning.


  • Provides continuous measurement of free fluoride in potable water without sample conditioning
  • Provides reliable measurements down to 0.1 PPM and as high as 1000 PPM
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?


Many drinking water systems add fluoride to their water to help their residents prevent tooth decay. To achieve a fluoride concentration of about 1 PPM, a hydrofluorosilicic acid or sodium fluoride solution is metered into the process at a rate that is proportional to total plant flow. However, flow control problems may result in a loss of chemical feed or over-feed condition. An on-line fluoride monitor can provide reliable control of chemical addition for a consistent fluoride concentration.
ATI’s Model Q46F/D Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning. The system employs a fluoride sensitive ion selective electrode (ISE) which provides reliable measurements down to 0.1 PPM and as high as 1000 PPM. The system is designed for use in applications where the pH and conductivity of the water are relatively stable. Fluoride measurement applications with widely varying sample conditions may require a more sophisticated system employing automated sample conditioning such as ATI’s Q46F-AutoChem system.
Fluoride monitoring systems are easy to install, requiring a ¼” O.D. sample tube connected to a special flowcell provided as part of the system. Inlet flow must be regulated to 6 GPH (0.4 LPM) or less and should be stable. As an option, ATI can supply the fluoride monitoring system factory mounted on a panel containing all necessary flow controls and a visual flow indicator.

Image Part # Product Description Price Stock Order
ATI Q46F/D Direct Fluoride Monitor Q46F/D Direct fluoride monitor Drop ships from manufacturer

In The News

Volunteer Water Quality Monitoring Networks at the Heart of Citizen Science Movement

Lately, citizen science initiatives have been getting noticed by laypeople and mainstream media outlets. As everyday people become aware of ways they can get involved in actual scientific research, more of them are doing so—especially teachers and parents working with children. But this citizen science wave isn't actually a new thing. It has been growing outward from its core in volunteer water quality monitoring networks for years. Around the country, volunteers have been quietly monitoring the water quality in lakes, streams, rivers, marshes, and other surface waterways for decades. These highly successful programs have been supporting better water quality in communities across America, and in doing so have also formed the heart of the modern citizen science movement.

Read More

US Steel Dumping Chromium: Citizens Fighting for Lake Michigan, and Drinkable Water

If you remember the movie “Erin Brockovich,†you are already familiar with hexavalent chromium, a toxic substance that was contaminating the drinking water of people in California in the movie ( and in real life ). Although on the silver screen there was a very satisfying Hollywood resolution to the problem, there has not yet been such a happy ending in real life. The dumping of the hexavalent chromium by PG&E that the film documented took place in the 1950s and 1960s, although the company didn't tell anyone about the problem until the late 1980s. Based on current litigation around the Illinois and Indiana shores of Lake Michigan, startlingly little has changed.

Read More

Monitoring the Mississippi: Wild Celery, Redhorse and More

The Upper Mississippi stretches from headwaters at Lake Itasca, Minnesota, all the way to Cairo, Illinois, about 1,250 miles. It includes picturesque wilderness areas complete with waterfalls, limestone bluffs and expansive valleys. It has attracted many campers, hikers, fishing enthusiasts and people seeking to launch their favorite boats or canoes. It has also been a haven for environmental researchers. Since 2016, Jeff Houser is the Science Director for the Long Term Resource Monitoring element (LTRM) of the Upper Mississippi River Restoration Program (UMRR).  Previously, he led the LTRM water quality component from 2003 until 2016.

Read More