Q46F/D

ATI Q46F/D Direct Fluoride Monitor

ATI Q46F/D Direct Fluoride Monitor

Description

ATI's Model Q46F/D Direct Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning.

Features

  • Provides continuous measurement of free fluoride in potable water without sample conditioning
  • Provides reliable measurements down to 0.1 PPM and as high as 1000 PPM
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Many drinking water systems add fluoride to their water to help their residents prevent tooth decay. To achieve a fluoride concentration of about 1 PPM, a hydrofluorosilicic acid or sodium fluoride solution is metered into the process at a rate that is proportional to total plant flow. However, flow control problems may result in a loss of chemical feed or over-feed condition. An on-line fluoride monitor can provide reliable control of chemical addition for a consistent fluoride concentration.
 
ATI’s Model Q46F/D Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning. The system employs a fluoride sensitive ion selective electrode (ISE) which provides reliable measurements down to 0.1 PPM and as high as 1000 PPM. The system is designed for use in applications where the pH and conductivity of the water are relatively stable. Fluoride measurement applications with widely varying sample conditions may require a more sophisticated system employing automated sample conditioning such as ATI’s Q46F-AutoChem system.
 
Fluoride monitoring systems are easy to install, requiring a ¼” O.D. sample tube connected to a special flowcell provided as part of the system. Inlet flow must be regulated to 6 GPH (0.4 LPM) or less and should be stable. As an option, ATI can supply the fluoride monitoring system factory mounted on a panel containing all necessary flow controls and a visual flow indicator.

Image Part # Product Description Price Stock Order
ATI Q46F/D Direct Fluoride Monitor Q46F/D Direct fluoride monitor Drop ships from manufacturer

In The News

Colorado River Fish Contain Levels Of Selenium, Mercury

Largely seen as pristine and relatively untouched by human activity thanks to its protected status, the portion of the Colorado River flowing through Grand Canyon National Park is anything but, according to recently published research. This is evidenced by high levels of selenium and mercury found in the fishes there. Scientists from many institutions were involved in the years-long work, full results of which have been published in the journal Environmental Toxicology and Chemistry. It was led by the U.S. Geological Survey, but perhaps the contributors from Idaho State University got the best end of the stick. They were looking into the food webs of the river to evaluate concentrations of selenium and mercury gathering in fish.

Read More

Heron dipper-Tough Is Ready For Harsh Deployments

For all the straightforward groundwater monitoring applications that the folks at Heron Instruments help with, there are a few that are far from typical. These include projects that take place near remediation sites or not far from waste disposal operations. Realizing that customers working in those sorts of projects are in need of a more robust option, the company has released the dipper-Tough . The new water level meter takes inspiration from Heron’s popular dipper-T , while throwing in a host of improvements that environmental pros working in groundwater can really appreciate.

Read More

Cellular Data Buoy Supports Lake Erie Algae Research, Public Outreach

Scientists at Ohio State University are at the fore of the fight against harmful algal blooms in Lake Erie. In fact, they deployed a new cellular data buoy off the shore of Gibraltar Island in 2014, months before the Toledo Water Crisis spurred a boom in monitoring platforms around the lake. That was in part because researchers at the university’s Stone Laboratory, backed by Ohio Sea Grant and housed on Gibraltar, had been seeing a resurgence of blooms in the lake long before international attention came around following the crisis. There was an opportunity, they saw, to continue advancing the mission of research, education and outreach on Lake Erie. The cellular data buoy complimented that in a great way.

Read More