ATI Q46F/D Direct Fluoride Monitor

ATI Q46F/D Direct Fluoride Monitor


ATI's Model Q46F/D Direct Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning.


  • Provides continuous measurement of free fluoride in potable water without sample conditioning
  • Provides reliable measurements down to 0.1 PPM and as high as 1000 PPM
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?


Many drinking water systems add fluoride to their water to help their residents prevent tooth decay. To achieve a fluoride concentration of about 1 PPM, a hydrofluorosilicic acid or sodium fluoride solution is metered into the process at a rate that is proportional to total plant flow. However, flow control problems may result in a loss of chemical feed or over-feed condition. An on-line fluoride monitor can provide reliable control of chemical addition for a consistent fluoride concentration.
ATI’s Model Q46F/D Fluoride Monitor provides continuous measurement of free fluoride concentration in potable water without sample conditioning. The system employs a fluoride sensitive ion selective electrode (ISE) which provides reliable measurements down to 0.1 PPM and as high as 1000 PPM. The system is designed for use in applications where the pH and conductivity of the water are relatively stable. Fluoride measurement applications with widely varying sample conditions may require a more sophisticated system employing automated sample conditioning such as ATI’s Q46F-AutoChem system.
Fluoride monitoring systems are easy to install, requiring a ¼” O.D. sample tube connected to a special flowcell provided as part of the system. Inlet flow must be regulated to 6 GPH (0.4 LPM) or less and should be stable. As an option, ATI can supply the fluoride monitoring system factory mounted on a panel containing all necessary flow controls and a visual flow indicator.

Image Part # Product Description Price Stock Order
ATI Q46F/D Direct Fluoride Monitor Q46F/D Direct fluoride monitor Drop ships from manufacturer

ATI Q46F/D Direct Fluoride Monitor Reviews

| Write a Review

Be the first to write a review

In The News

White Bear Lake Stands Out In Study Of Twin Cities Lakes

Following water level declines in lakes around the Twin Cities area of Minnesota, scientists at the U.S. Geological Survey were interested in identifying the cause. What they found along with that was a large degree of variability between the lakes, based on geology, elevation and land use. That there was such variation isn’t too surprising, as Mother Nature is far from neat in laying things out. But the sheer size and scope of the study has a nice way of underscoring just how different individual lakes can be from one another even if they sit nearby. The effort, looking at 96 different lakes around Minneapolis and St. Paul, Minn., found wide variation in water levels over time. Some lakes gained in water levels while others nearby saw them decline.

Read More

West Antarctica Glaciers Melt At Pace Not Seen Before

Researchers with the University of California (UC), Irvine, and NASA have completed a pair of studies documenting the pace of glacier melt in West Antarctica. Their findings show that the melting there is occurring at a rate never before observed. The studies examined three neighboring glaciers that are melting and retreating at different rates. The Smith, Pope and Kohler glaciers flow into the Dotson and Crosson ice shelves in the Amundsen Sea embayment in West Antarctica, the part of the continent with the largest decline in ice. One, led by a UC Irvine researcher, looked at satellite records in its approach.

Read More

Figuring Out How Microplastics Move From Mussels To Fish

Microscopic beads and fabrics float in our waterways, get ingested by fish and other creatures, and impact the environment in lots of negative ways. But despite that knowledge, there is little we know about how these microplastics first enter aquatic food webs. In a pilot study, researchers at the University of Notre Dame are studying the dynamics of just how microscopic plastics are first transferred from filter feeders to fish. Their investigation is using asian clams and sculpins to pinpoint the interactions underway. The researchers originally wanted to use round gobies, a prolific invasive fish in Lake Erie.

Read More