ATI Q46H/79S Total Chlorine Stripping Monitor

ATI Q46H/79S Total Chlorine Stripping Monitor


ATI’s Model Q46H/79S uses this same standard iodometric chemistry for measuring total chlorine, but with a unique sensing technique for measuring the released iodine.


  • Measurement is made without contact between water sample and sensor
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?


Residual chlorine is found in many chemical forms in water systems. Residuals in clean water are often predominantly free chlorine while wastewater and cooling water can contain mixtures of free chlorine, combined chlorine, and organochlorine species. Measurement of residual chlorine in applications where only free chlorine (potable water) or only combined chlorine (chloraminated water) exist can often be monitored with direct sensor measurement. However, applications where a variety of chlorine forms can exist (wastewater effluent and some cooling water) require a more complicated measurement method. These applications generally require a “Total Chlorine” measurement and involve chemically converting all chlorine species into a single chemical form.

This is normally done by reacting the sample with pH 4 buffer and potassium iodide to convert various chlorine compounds into iodine. Many on-line monitors for total chlorine use this iodometric method, often measuring the current between two exposed electrodes to determine iodine concentration. ATI’s Model Q46H/79S uses this same standard iodometric chemistry, but with a unique sensing technique for measuring the released iodine. The system takes the reacted sample containing iodine and uses an air-stripping system to remove molecular iodine from solution. The gas-phase iodine from the water sample is channeled through a conditioning module and then directly to an iodine gas sensor. The result is that the iodine measurement is made without any contact between the water sample and the sensor. Contaminants in the sample that cause fouling and contamination of standard electrodes do not affect the Q46 system, providing greater operational reliability.

Image Part # Product Description Price Stock Order
ATI Q46H/79S Total Chlorine Stripping Monitor Q46H/79S Total chlorine stripping monitor Usually ships in 1-2 weeks

ATI Q46H/79S Total Chlorine Stripping Monitor Reviews

| Write a Review

Be the first to write a review

In The News

White Bear Lake Stands Out In Study Of Twin Cities Lakes

Following water level declines in lakes around the Twin Cities area of Minnesota, scientists at the U.S. Geological Survey were interested in identifying the cause. What they found along with that was a large degree of variability between the lakes, based on geology, elevation and land use. That there was such variation isn’t too surprising, as Mother Nature is far from neat in laying things out. But the sheer size and scope of the study has a nice way of underscoring just how different individual lakes can be from one another even if they sit nearby. The effort, looking at 96 different lakes around Minneapolis and St. Paul, Minn., found wide variation in water levels over time. Some lakes gained in water levels while others nearby saw them decline.

Read More

West Antarctica Glaciers Melt At Pace Not Seen Before

Researchers with the University of California (UC), Irvine, and NASA have completed a pair of studies documenting the pace of glacier melt in West Antarctica. Their findings show that the melting there is occurring at a rate never before observed. The studies examined three neighboring glaciers that are melting and retreating at different rates. The Smith, Pope and Kohler glaciers flow into the Dotson and Crosson ice shelves in the Amundsen Sea embayment in West Antarctica, the part of the continent with the largest decline in ice. One, led by a UC Irvine researcher, looked at satellite records in its approach.

Read More

Figuring Out How Microplastics Move From Mussels To Fish

Microscopic beads and fabrics float in our waterways, get ingested by fish and other creatures, and impact the environment in lots of negative ways. But despite that knowledge, there is little we know about how these microplastics first enter aquatic food webs. In a pilot study, researchers at the University of Notre Dame are studying the dynamics of just how microscopic plastics are first transferred from filter feeders to fish. Their investigation is using asian clams and sculpins to pinpoint the interactions underway. The researchers originally wanted to use round gobies, a prolific invasive fish in Lake Erie.

Read More