Q46H/83

ATI Q46H/83 Potassium Permanganate Monitor

ATI Q46H/83 Potassium Permanganate Monitor

Description

The ATI Q46H/83 allows for continuous monitoring of low permanganate concentrations, allowing operators to adjust chemical feed rates and achieve target values.

Features

  • Monitors KMnO4 without sensor contamination
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Potassium Permanganate (KMnO4) is a strong oxidizer used in the water industry for reduction of organics in raw water. It is also used for control of zebra mussel problems at raw water intake structures. Continuous monitoring of low permanganate concentrations allows operators to adjust chemical feed rates and achieve target values. Chemical feed problems that result in either too little or too much residual can be quickly identified and corrected.
 
The Q46H/83 eliminates this problem by employing a measurement method in which the sensor never comes into contact with the sample. In operation, water containing permanganate is mixed with pH buffer and potassium iodide solutions. Permanganate oxidizes the iodide to iodine (I2), and the resulting I2 is stripped out of solution and measured using an I2 gas sensor. This “gas phase” measurement  technique eliminates MnO2 sensor fouling, resulting in a system capable of providing long term reliability.

The Q46H/83 Permanganate monitor consists of two main components, an electronic display unit and a chemistry module.  The  chemistry module contains sample and reagent pumps, sample handling systems, and the gas sensor that provides the final measurement.  An inlet overflow assembly attached to the bottom of the chemistry module is where the inlet sample line and drain line are connected.  Sample inlet flows of 250-100 ml./min. are recommended to keep system response time to a minimum.  Reagent bottle holders are supplied so that reagents can be wall mounted below the chemistry system.

Image Part # Product Description Price Stock Order
ATI Q46H/83 Potassium Permanganate Monitor Q46H/83 Potassium permanganate monitor Usually ships in 1-2 weeks

In The News

Ice Fishing With A SondeCAM Underwater Fishing Camera

Thinking of hitting the ice with a SondeCAM underwater fishing camera? Due to its rugged design, you won't have to worry about it handling the harsh elements. However there are a few simple tricks to get the most out of a FishSens SondeCAM while ice fishing. You won't have to do anything to modify the SondeCAM itself, but you are going to have to bring a few extra things. Most importantly we are going to need a power source. Unless you are hauling your gear with a truck, you'll want something more portable than the battery you used in the boat. Pick up an inexpensive and maintenance-free 12-volt, 9-amp battery. It is going to provide plenty of power, but will be much lighter and take up less space.

Read More

Size Them Up With A SondeCAM Underwater Fishing Camera

We've all felt the frustration of weeding through a school of dinks to catch a "keeper." Often the small fish outnumber the bigger ones and they are typically more aggressive. Sometimes there's no choice but to deal with it, as is often the case with open water fishing. However a frozen lake involves a vertical presentation and a stable platform, it's a perfect situation to pick and choose which fish you want. Once you locate a school and get set up it's time to start sizing them up with a FishSens SondeCAM underwater fishing camera. It can be mind-blowing just how big some of these schools of fish are and also how outnumbered fish of a desirable size can be.

Read More

In Ontario Lakes, Non-Native Bass Impact Native Fish

It’s no secret that anglers have been the means by which invasive species and non-native fish have spread to new water bodies in the past. Fishermen have even been known to transport some of their favorite fish to new areas on purpose so that they can catch them a little closer to home. And the results of those actions have not always been ideal. In Ontario, Canada, fishermen have taken non-native bass and stocked them into what were historically lakes dominated by brook and cutthroat trout. The actions have impacted ecosystems, but scientists have been unable to broadly study the effects because they didn’t have enough data. But that is no longer the case for some Ontario lakes, as a study from biologists at the University of Toronto shows.

Read More