ATI Q46T Turbidity Monitor

ATI Q46T Turbidity Monitor


The Q46T Monitor is designed to meet the needs of both municipal and industrial water treatment for reliable, low-range turbidity measurement.


  • Optional Q-Blast removes build-up on the sensor, reducing sensor maintenance
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?


ATI’s Model Q46T Turbidity Monitor is designed to meet the needs of both municipal drinking water systems and industrial water treatment for reliable, low-range turbidity measurement. Using an infrared or energy source in this 90 degree scatter measurement, the system provides high sensitivity measurement with unmatched zero stability. Turbidity measurements down to 0.001 NTU or as high as 2000 NTU can be measured with the same monitor, eliminating the need for separate high and low range instruments.

Turbidity Sensor
The turbidity sensor used in the Q46T monitor is a planer sensor with the light source and photo detector mounted on a flat face. Lenses in front of the light source direct the beam of light at a 45-degree angle into the sample. Another lens in front of the photo detector collects the 90-degree scattered light and directs it to the detector. The signal generated by the detector is amplified inside the sensor for transmission to the display unit. Periodic pulsing of the light source allows the sensor zero to be adjusted automatically for improved stability in low-range applications. Turbidity sensors are available for measurement in a pressurized flowcell or for direct submersion in open tanks. A 1-1/2” flow T assembly is also available for direct in-line measurements. The flowcell is required for very low measurements (0-2 NTU), while the submersion unit may be used for higher turbidity applications such as wastewater effluent or raw water.

Sensor Flowcell
Air bubbles are a common problem in many turbidity systems. ATI’s turbidity sensor is designed to operate under pressure to eliminate the sample degassing that often causes air bubble errors. Sample pressure remains constant until the sample exits the measuring chamber, resulting in a more reliable measurement. The turbidity electronics unit is an AC or DC powered instrument providing an LCD display of turbidity value, as well as indication of alarm status and instrument diagnostics. The NEMA 4X can be wall, pipe, or handrail mounted using the universal mounting kit included with each system.

Turbidity Monitor
The monitor provides display of turbidity over a variety of operating ranges. The minimum display range of 0-2 NTU provides resolution down to 0.001 NTU and is suitable for almost any final filter monitoring application. Ranges of 0- 20 or 0-200 NTU are available for raw water or clarifier effluent monitoring. The Q46T provides three programmable alarms with SPDT alarm relays are included, as well as two isolated 4-20 mA outputs. The analog outputs may be programmed for full-scale outputs as low as 0-0.2 NTU, and can be inverted if desired.

Q46T monitors also provide sensor diagnostic functions to warn of condition that cause inaccurate or invalid readings. The sensor is continuously monitored for optical fouling, and will display an alarm message when the sensor requires cleaning In addition, the sensor will detect the lack of water in the flowcell and provide a “dry cell” when an air interface is detected. These alarm conditions will cause a third alarm relay to activate, which can be used to indicate these conditions remotely.

ATI’s Q-Blast option provides the ideal answer for submersible turbidity applications such as wastewater effluent.  Employing a unique “air-blast” cleaning method, sensors can be cleaned as often as necessary without operator attention.  Pulses of pressurized air delivered through a nozzle at the tip of the sensor remove accumulated solids from critical sensing surfaces, resulting in accurate and reliable measurements.

The Q-Blast Auto-Clean assembly is housed in a NEMA 4X enclosure suitable for indoor or outdoor use.  The system includes an integral compressor and air-pulse control components, with a power supply for the entire air supply system incorporated into the design.  A simple connection to the Q46T monitor provides the sequencing for the system and allows the operator to select cleaning frequencies as often as once every hour to as little as once every 999 hours.  To insure performance in extreme cold conditions, a thermostatically controlled heater is included in the assembly, allowing operation down to -40°C. 

Image Part # Product Description Price Stock Order
ATI Q46T Turbidity Monitor Q46T Turbidity monitor Drop ships from manufacturer

ATI Q46T Turbidity Monitor Reviews

| Write a Review

Be the first to write a review

In The News

First Environmental Monitoring System For Baltimore’s Inner Harbor

Baltimore’s Inner Harbor and the rivers that flow into it are important sources of water to Chesapeake Bay, popular recreation sites and the targets of an ambitious clean-up plan. But the city has for some time lacked an environmental monitoring system for tracking water quality in the harbor continuously. That is about to change, thanks to a collaboration between the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA). It will lead to the new installation of a suite of sensors that will provide the public and scientists with the first comprehensive, real time look at water quality in the harbor.

Read More

Parasite Behind Yellowstone River Fish Kill Found In Other Rivers

A parasite that caused a massive fish kill in Montana’s Yellowstone River has been found in at least seven other rivers in the state, according to the Bozeman Daily Chronicle . Scientists with the Montana Fish, Wildlife and Parks department made the find. So far, the parasite has been confirmed in the upper and lower Madison, East Gallatin, Bighorn, Stillwater, and Boulder Rivers. It had already been confirmed in the Jefferson and Shields Rivers. The microscopic parasite causes proliferative kidney disease, one of the most serious diseases to impact whitefish and trout. The effect of the disease on Yellowstone’s fish populations is exacerbated by other stressors like near-record low flows, consistent high temperatures and the disturbance caused by recreational activities.

Read More

ESPniagara Tracks Algal Toxins In Lake Erie, Protects Drinking Water

It may have taken 20 years and $20 million to develop, but Lake Erie researchers working to fight harmful algal blooms (HABs) now have a new tool to safeguard drinking water: ESPniagara. The advanced sampler has been called a “lab in a can” for its ability to sample microcystins, the most common algal toxin these days, in almost real time. The big gadget’s name is a mashup between “ESP,” for environmental sample processor, and the name of Admiral Oliver Hazard Perry’s ship during the War of 1812. “We wanted to name it something that was significant to Lake Erie,” said Tim Davis, molecular biologist and lead HABs researcher at the National Oceanic and Atmospheric Administration’s Great Lakes Environmental Research Lab (NOAA GLERL) in Ann Arbor, Mich.

Read More