96VFL13

Extech 1/4 DIN Temperature PID Controller

Extech 1/4 DIN Temperature PID Controller

Description

The Extech 96VFL13 protects heaters from cold-starts by ensuring exact and slow heating of the product.

Features

  • Eliminates over-shoot, unwanted process fluctuations, and drift
  • Fuzzy Logic PID, Auto tuning, and Soft Start features
  • 9 selections for thermocouple input type and 2 selections for RTD input with no hardware modification
Free Shipping on this product
Your Price
$349.99
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The Extech 96VFL13 protects heaters from cold-starts by ensuring exact and slow heating of the product. PID with Fuzzy Logic eliminates over-shoot, unwanted process fluctuations, and drift. Soft Start provides careful, exact, and slow heating of the product which is ideal for Thermo-Plastic industry settings. Other features include a 4-digit LED display, easy navigation with a user-friendly menu and keypad, and one-touch auto tuning for quick setup and stable control. The controller features nine selections for thermocouple input type and 2 selections for RTD input without needing hardware modification.
Notable Specifications:
  • Thermocouple inputs type K: -58 to 2498°F (-50 to 1370°C)
  • Thermocouple inputs type J: -58 to 1832°F (-50 to 1000°C)
  • Thermocouple inputs type B: 32 to 3272°F ( 0 to 1800°C)
  • Thermocouple inputs type T: -454 to 752°F (-270 to 400°C)
  • Thermocouple inputs type E: -58 to 1382°F (-50 to 750°C)
  • Thermocouple inputs type R or S: 32 to 3182°F ( 0 to 1750°C)
  • Thermocouple inputs type N: -58 to 2372°F (-50 to 1300°C)
  • Thermocouple inputs type C: -58 to 3272°F (-50 to 1800°C)
  • Thermocouple inputs PT100Ω RTD (DIN): -328 to 1652°F (-200 to 850°C)
  • Thermcouple inputs PT100Ω RTD (JIS): -328 to 1202°F (-200 to 650°C)
  • Control/alarm relay: 5 Amp @ 110V, SPST (resistive load)
  • DC current output: 4-20mA (resistive); Impedance < 600 ohms
  • Accuracy: Thermocouple: ±1.8°F (1ºC); RTD: ±0.36°F (0.2ºC)
  • Sampling time: Four (4) samples per second
  • LED status: Alarm and Control output status
  • Control modes: Fuzzy Logic enhanced three-term PID with Auto Tune
  • Proportional band: 0 to 300.0%
  • Integral time: 0 to 3600 seconds
  • Derivative time: 0 to 900 seconds
  • Hysteresis: 0.0 to 200.0 or 0.0 to 2000
  • Cycle time: 1 to 100 seconds
  • Front panel: Lexan construction, Drip/Dust proof; IR rating: IEC IP63
  • Power supply: 90 to 264 VAC; 50/60 Hz (< 5VA power consumption)
What's Included:
  • (1) Mounting bracket hardware
  • (1) Set of screw terminals
Image Part # Product Description Price Stock Order
Extech 1/4 DIN Temperature PID Controller 96VFL13 1/4 DIN temperature PID controller (4-20mA output)
$349.99
Drop ships from manufacturer
Extech 1/16 DIN Temperature PID Controller 48VFL13 1/16 DIN temperature PID controller (4-20mA output)
$229.99
Drop ships from manufacturer
Extech 1/16 DIN Temperature PID Controller 48VFL11 1/16 DIN temperature PID controller (one relay output)
$199.99
Drop ships from manufacturer

In The News

The Arizona Department of Environmental Quality's Water Quality Division

With an average rainfall of only 12.5 inches per year and a population that's growing faster than the country's , Arizona is a state that faces unique challenges, especially when it comes to clean, safe water. The Water Quality Division of the Arizona Department of Environmental Quality (ADEQ) protects and enhances public health and the environment by monitoring and regulating drinking water. And although they make use of the latest scientific methods and new technology, given the current state of Arizona's water system, they also rely upon low-tech equipment and cooperation from members of the community to monitor water quality in the state. Team members in the Groundwater Protection Program work to sample, test and characterize groundwater quality in all 51 of Arizona’s basins.

Read More

Latest Satellite and Eddy Covariance Data Shows Vulnerability of Trees to Drought

William Anderegg, assistant professor of biology at the University of Utah, has spent years studying drought-stricken trees all over the world. As climate change is expected to cause increased drought severity in the future, the work of Anderegg and his colleagues becomes increasingly important. In a previous interview for the Environmental Monitor , Anderegg found that a tree’s hydraulic safety margin was the best indicator of whether a tree would survive drought. The hydraulic safety margin is an expression of how the tree reacts under drought conditions, where there is very little water being pulled up the tree’s transport system and air is being pulled up instead. “It’s like a heart attack for the tree,” he noted.

Read More

A Balancing Act In The Grand Canyon: The High Flow Experiments

You've probably heard of the Four Corners region of the United States; that's where the corners of Arizona, New Mexico, Utah and Colorado meet at one point. These same four states are also part of the Colorado River Storage Project (CRSP), which began to change the face of the American West in 1956, enabling the population explosions in places like Phoenix and Los Angeles to continue thanks to usable water. Glen Canyon Dam is 220 meters high and 480 meters wide, and this massive structure has changed this section of the Colorado River all the way to Lake Mead dramatically. It has also increased low-flow magnitudes, decreased peak flow magnitudes and volumes and caused fluctuations in daily discharge levels that the area relies upon for generation of hydroelectric power.

Read More