42570

Extech 42570 Dual Laser InfraRed Thermometer

Extech 42570 Dual Laser InfraRed Thermometer

Description

The Extech Dual Laser InfraRed Thermometer indicates ideal measuring distance when two laser points converge to a 1" target spot.

Features

  • High 50:1 distance to target ratio
  • Lock function for continous readings
  • Fast 100 millisecond response time
Free Shipping on this product
Your Price
$459.99
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The Extech Dual Laser InfraRed Thermometer features a fast 100mS response with highest accuracy at a point where the dual lasers converge. The fast response is ideal for quick checks of multiple spots in a process or for catching spikes in temperature. The high 50:1 distance to target ratio measures smaller surface areas at greater distances. 

 

A type K thermocouple probe input ranges from -58 to 2498°F (.50 to 1370°C). The white backlit multifunction LCD displays a bargraph for analysis of data points. The adjustable high/low set points with audible alarm alerts users when the temperature exceeds the programmed set points. Also included is a tripod mount for continous readings, and software to connect to a PC via USB port.

Notable Specifications:
  • Laser convergence distance: 50" (127cm)
  • IR range: -58 to 3992 F (-50 to 2200 C)
  • Repeatability: +/-0.5% or 1.8 F/1 C
  • Basic accuracy: +/-(1% of rdg + 2 F/1 C)
  • Max resolution: 0.1 F/C
  • Emissivity: 0.10 to 1.00 adjustable
  • Field of view (distance to target): 50:1
  • Type K range: -58 to 2498 F (-50 to 1370 C)
  • Memory: manually store/recall 100 readings
  • Dimensions: 8x6.1x2" (204x155x52mm)
  • Weight: 11.3oz (320g)
  • Warranty: 3 years
What's Included:
  • (1) Thermometer
  • (1) Type K temperature probe
  • (1) USB cable
  • (1) Software CD
  • (1) Tripod
  • (1) 9V battery
  • (1) Carrying case
Image Part # Product Description Price Stock Order
Extech 42570 Dual Laser InfraRed Thermometer 42570 Dual laser InfraRed thermometer with Type K input and USB interface
$459.99
Drop ships from manufacturer
Extech 42570 Dual Laser InfraRed Thermometer 42570-NISTL Dual laser InfraRed thermometer with Type K input and USB interface, NISTL traceable
$659.99
Drop ships from manufacturer

In The News

Cooling water from Northeast U.S. power plants keeps rivers warmer

Rivers are a vital cooling source for power plants, but high-temperature water returned to rivers from the plants may detrimentally heat rivers and change aquatic ecosystems, according to a recent study. Scientists from the University of New Hampshire and the City College of New York gathered federal data on power plants and river systems and linked up river flow and heat transfer models to figure out just how hot rivers get in the northeastern U.S. They found that about one third of heat generated in thermoelectric power plants in the Northeast is drained into rivers via used cooling water. Just more than a third of the total heat generated at plants in the Northeast is converted directly into electricity for consumer use.

Read More

White River Monitoring Backs Work to Boost River’s Civic Profile

The White River looms large in Indianapolis, with some stretches spanning more than 500 feet wide where it runs through downtown. But the river has historically received more sewage than respect. But, like many urban rivers, the White River is in the midst of a slow recovery from decades of neglect and abuse. Between a massive $2 billion sewer improvement project to new funding for programs to educate people about the river and get them on the water, the recovery could hasten as momentum builds behind the idea that a healthy, accessible White River would enrich the city and its citizens. Behind that work, a growing number of water quality monitoring programs will help track improvements on the river and catch any emerging pollution concerns.

Read More

Baking in the Sun: How Groundwater Recharge is Likely to Change as the Climate Does

Much of the American west depends upon groundwater for its survival. Originally the region was sustainably settled and farmed by Native American tribes. Eventually, new settlers without those abilities came west and resettled in a sort of patchwork; newcomers chose to stay near springs and other places where exploitable groundwater was close to the surface. In time, technologies developed enough for deeper wells to be drilled and groundwater to be pumped. This made the high level of development that is now present in places like Los Angeles and Phoenix possible. However, it proceeded without any detailed understanding of the groundwater recharge process in the area.

Read More