Extech Temperature PID Controller

Extech Temperature PID Controller


The Extech Temperature PID Controller offers Fuzzy Logic PID, auto tuning, and soft start features for the ultimate control.


  • Dual 4-digit LED displays for process and setpoint values
  • One-touch auto tuning for quick setup and stable, precise control
  • Accepts thermocouple and RTD inputs
Free Shipping on this product
Your Price
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?


The Extech Temperature PID Controller uses Fuzzy Logid PID and soft-start features to protect heaters from cold starts. The PID plus Fuzzy Logic tackles the most demanding applications, eliminating over-shoot, unwanted process fluctuations, and drift. The soft-start feature is ideally suited for processes such as in the Thermo-Plastics industry, where careful and exact slow heating of products is required. 


The dual 4-digit LED displays for processes and setpoint values. Programming and navigation are made easy with the user-friendly menus and tactile keypad. The manual mode allows users to override automatic control and drive the controller output higher or lower. The one-touch auto tuning is available for quick set-up and stable, precise control. Two latching alarm relays standard with 8 alarm modes plus advanced timer modes. 


The single stage ramp and soak program with ramp-to-setpoint limit can be combined with the soft start feature for critical process demands. The controller accepts thermocouple and RTD inputs. The temperature display is °F or °C selectable, the thermocouple input has 9 selectable types, and the RTD input has 2 selectable types from the display menu without the need for hardware modification. 

Notable Specifications:
  • Type K input temperature range: -58 to 2498°F (-50 to 1370°C)
  • Type J input temperature range: -58 to 1832°F (-50 to 1000°C)
  • Type B input temperature range: 32 to 3272°F ( 0 to 1800°C)
  • Type T input temperature range: -454 to 752°F (-270 to 400°C)
  • Type E input temperature range: -58 to 1382°F (-50 to 750°C)
  • Type R or S input temperature range: 32 to 3182°F ( 0 to 1750°C)
  • Type N temperature input range: -58 to 2372°F (-50 to 1300°C)
  • Type C temperature input range: -58 to 3272°F (-50 to 1800°C)
  • PT100Ω RTD (DIN) temperature input range: -328 to 1652°F (-200 to 850°C)
  • PT100Ω RTD (JIS) temperature input range: -328 to 1202°F (-200 to 650°C)
  • Control/alarm relay: 5 Amp @ 110V, SPST (resistive load)
  • DC current output: 4-20mA (resistive); impedance < 600 ohms
  • Accuracy: thermocouple: ±1.8°F (1ºC); RTD: ±0.36°F (0.2ºC)
  • Sampling time: four samples per second
  • LED display: two 4-digit displays for process value, setpoint, and programming modes
  • LED status: alarm and control output status
  • Control modes: fuzzy logic enhanced three-term PID with auto tune
  • Proportional bandwidth: 0 to 300.0%
  • Integral time: 0 to 3600 seconds
  • Derivative time: 0 to 900 seconds
  • Hysterisis: 0.0 to 200.0 or 0.0 to 2000
  • Cycle time: 1 to 100 seconds
  • Front panel: lexan construction, drip/dust proof; IR rating: IEC IP63
  • Power supply: 90 to 264 VAC; 50/60 Hz (< 5VA power consumption)
What's Included:
  • (1) PID Controller
  • (1) Mounting bracket
Image Part # Product Description Price Stock Order
Extech Temperature PID Controller 96VFL11 Controller, PID, 1/4 DIN
Drop ships from manufacturer

Extech Temperature PID Controller Reviews

| Write a Review

Be the first to write a review

In The News

First Environmental Monitoring System For Baltimore’s Inner Harbor

Baltimore’s Inner Harbor and the rivers that flow into it are important sources of water to Chesapeake Bay, popular recreation sites and the targets of an ambitious clean-up plan. But the city has for some time lacked an environmental monitoring system for tracking water quality in the harbor continuously. That is about to change, thanks to a collaboration between the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA). It will lead to the new installation of a suite of sensors that will provide the public and scientists with the first comprehensive, real time look at water quality in the harbor.

Read More

Parasite Behind Yellowstone River Fish Kill Found In Other Rivers

A parasite that caused a massive fish kill in Montana’s Yellowstone River has been found in at least seven other rivers in the state, according to the Bozeman Daily Chronicle . Scientists with the Montana Fish, Wildlife and Parks department made the find. So far, the parasite has been confirmed in the upper and lower Madison, East Gallatin, Bighorn, Stillwater, and Boulder Rivers. It had already been confirmed in the Jefferson and Shields Rivers. The microscopic parasite causes proliferative kidney disease, one of the most serious diseases to impact whitefish and trout. The effect of the disease on Yellowstone’s fish populations is exacerbated by other stressors like near-record low flows, consistent high temperatures and the disturbance caused by recreational activities.

Read More

ESPniagara Tracks Algal Toxins In Lake Erie, Protects Drinking Water

It may have taken 20 years and $20 million to develop, but Lake Erie researchers working to fight harmful algal blooms (HABs) now have a new tool to safeguard drinking water: ESPniagara. The advanced sampler has been called a “lab in a can” for its ability to sample microcystins, the most common algal toxin these days, in almost real time. The big gadget’s name is a mashup between “ESP,” for environmental sample processor, and the name of Admiral Oliver Hazard Perry’s ship during the War of 1812. “We wanted to name it something that was significant to Lake Erie,” said Tim Davis, molecular biologist and lead HABs researcher at the National Oceanic and Atmospheric Administration’s Great Lakes Environmental Research Lab (NOAA GLERL) in Ann Arbor, Mich.

Read More