HD350

Extech HD350 Pitot Tube Anemometer + Differential Manometer

Extech HD350 Pitot Tube Anemometer + Differential Manometer

Description

The Extech Pitot Tube Anemometer + Differential Manometer reaches in tight locations where a vane anemometer can't fit to measure air velocity/airflow.

Features

  • ±0.7252psi range
  • 5 selectable units of pressure measurement
  • Stores/recalls up to 99 readings in each mode
Free Shipping on this product
Your Price
$409.99
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The Extech Pitot Tube Anemometer + Differential Manometer measures air velocity and airflow in difficult-to-reach or tight locations. The meter simultaneously displays pressure, air velocity, or air flow plus temperature on a large LCD display with backlighting. It has 5 selectable units of pressure measurements and a ±0.7252psi range. It stores and recalls up to 99 readings in each mode to then be transferred to a PC via the UBS port to analize data points using the included software. Additional meter functions include max/min/avg recording, relative time stamp, data hold, and auto power off.

Notable Specifications:
  • psi range: 0.7252psi
  • psi resolution: 0.0001psi
  • psi accuracy: ±0.3%FS
  • mbar range: 50.00mbar
  • mbar resolution: 0.01mbar
  • mbar accuracy: ±0.3%FS
  • inH2O range: 20.07inH2O
  • inH2O resolution: 0.01inH2O
  • inH2O accuracy: ±0.3%FS
  • mmH2O range: 509.8mmH2O
  • mmH2O resolution: 0.01mmH2O
  • mmH2O accuracy: ±0.3%FS
  • Pa range: 5000Pa
  • Pa resolution: 1Pa
  • Pa accuracy: ±0.3%FS
  • Repeatability: ±0.2% (max. ±0.5%FS)
  • Linearity/hysterisis: ±0.29FS
  • Maximum pressure: 10psi
  • Response time: 0.5s typica
  • ft/min range: 200 to 15733
  • ft/min resolution: 1
  • ft/min accuracy: ±3% rdg
  • m/s range: 1 to 80.00
  • m/s resolution: 0.01
  • m/s accuracy: ±3% rdg
  • km/h range: 3.5 to 288.0
  • km/h resolution: 0.1
  • km/h accuracy: ±3% rdg
  • MPH range: 2.25 to 178.66
  • MPH resolution: 0.01
  • MPH accuracy: ±3% rdg
  • knots range: 2.0 to 154.6
  • knots resolution: 0.1
  • knots accuracy: ±3% rdg
  • CFM range: 0 to 99,999
  • CFM resolution: 0.001
  • CFM accuracy: ±3% rdg
  • CMM range: 0 to 99,999
  • CMM resolution: 0.001
  • CMM accuracy: ±3% rdg
  • °F range: 32.0 to 122.0°F
  • °F resolution: 0.1°
  • °F accuracy: ±2°F
  • °C range: 0 to 50°C
  • °C resolution: 0.1°
  • °C accuracy: ±1°C
  • Meter dimensions: Meter: 8.2 x 2.9 x 1.9" (210 x 75 x 50mm)
  • Meter weight: 12oz (340g)
  • Pitot tube dimensions: 15.4 x 7.7” (390 x 195mm)
  • Pitot tube weight: 7.2oz (204g)
What's Included:
  • (1) Meter
  • (1) Pitot tube
  • (2) 33.5 (85cm) connection hoses
  • (1) 9V battery
  • (1) 100V-240V universal AC adaptor
  • (1) Hard carrying case
Image Part # Product Description Price Stock Order
Extech HD350 Pitot Tube Anemometer + Differential Manometer HD350 Pitot tube anemometer + differential manometer
$409.99
Drop ships from manufacturer

Questions & Answers

| Ask a Question
How does this meter measure air flow and pressure?
This anemometer uses a unique pitot tube method to measure air velocity and air flow, and a manometer hose to measure pressure in small, tight areas. To measure air velocity or air flow, the pitot tube is connected to the meter by the two pressure manometer hoses. Then the tube is held in the flow of air with the mouth of the tube facing the oncoming air. To measure pressure, connect only one hose to the input(+) port on the meter, and hold the open end of the tube toward the air flow.

In The News

The Arizona Department of Environmental Quality's Water Quality Division

With an average rainfall of only 12.5 inches per year and a population that's growing faster than the country's , Arizona is a state that faces unique challenges, especially when it comes to clean, safe water. The Water Quality Division of the Arizona Department of Environmental Quality (ADEQ) protects and enhances public health and the environment by monitoring and regulating drinking water. And although they make use of the latest scientific methods and new technology, given the current state of Arizona's water system, they also rely upon low-tech equipment and cooperation from members of the community to monitor water quality in the state. Team members in the Groundwater Protection Program work to sample, test and characterize groundwater quality in all 51 of Arizona’s basins.

Read More

Latest Satellite and Eddy Covariance Data Shows Vulnerability of Trees to Drought

William Anderegg, assistant professor of biology at the University of Utah, has spent years studying drought-stricken trees all over the world. As climate change is expected to cause increased drought severity in the future, the work of Anderegg and his colleagues becomes increasingly important. In a previous interview for the Environmental Monitor , Anderegg found that a tree’s hydraulic safety margin was the best indicator of whether a tree would survive drought. The hydraulic safety margin is an expression of how the tree reacts under drought conditions, where there is very little water being pulled up the tree’s transport system and air is being pulled up instead. “It’s like a heart attack for the tree,” he noted.

Read More

A Balancing Act In The Grand Canyon: The High Flow Experiments

You've probably heard of the Four Corners region of the United States; that's where the corners of Arizona, New Mexico, Utah and Colorado meet at one point. These same four states are also part of the Colorado River Storage Project (CRSP), which began to change the face of the American West in 1956, enabling the population explosions in places like Phoenix and Los Angeles to continue thanks to usable water. Glen Canyon Dam is 220 meters high and 480 meters wide, and this massive structure has changed this section of the Colorado River all the way to Lake Mead dramatically. It has also increased low-flow magnitudes, decreased peak flow magnitudes and volumes and caused fluctuations in daily discharge levels that the area relies upon for generation of hydroelectric power.

Read More