250-01

LI-COR LI-250A Carrying Case

LI-COR LI-250A Carrying Case

Description

LI-COR LI-250A Carrying Case

List Price
$$$$$
Your Price
Check Price

Usually ships in 3-5 days
Shipping Information
Return Policy
Why Buy From Fondriest?
Image Part # Product Description Price Stock Order
LI-COR LI-250A Carrying Case 250-01 LI-250A carrying case Usually ships in 3-5 days

In The News

LI-COR PAR sensors detect light waves to aid aquatic ecosystem research

Understanding how the sun’s rays fuel phytoplankton or plant growth may prove valuable to understanding an aquatic ecosystem. A pair of sensors from LI-COR can help researchers studying algal blooms and aquatic vegetation by measuring how much light enters underwater environments. Sitting below the surface, the LI-192 flat-lensed photosynthetically active radiation sensor and the LI-193 spherical PAR sensor measure light waves striking their silicon photovoltaic detectors.  They sense light wavelengths between 400 and 700 nanometers, which is the ideal range for photosynthesis. Dave Johnson, a LI-COR product manager for the LI-190 series, said the sensors’ individual designs make them ideal for different applications.

Read More

Ohio State greenhouse nurtures 'fruit fly of the plant world'

The Arabidopsis Biological Resource Center at Ohio State University was established in 1991 with funding from the National Science Foundation. Part of the center’s job is to meet demand for seed of the arabidopsis plant, which is widely used for genetic modeling. “A lot of the plants we’re growing are for seed production,” said Joan Leonard, greenhouse coordinator. “Arabidopsis is a good example. We call it the ‘fruit fly of the plant world,’ and it takes about six to eight weeks to go from seed to plant.” Arabidopsis is one of the many plants that will benefit from a new LI-COR PAR sensor being installed on campus. It will help manage light schedules for greenhouse plants.

Read More

Researchers Track Glacial Meltwater On Its Surprising Journey

While the scientific community has formed its consensus on how ice sheets are shrinking in and around Greenland, some researchers are tracking what happens to the meltwater as it drains into the ocean each summer. Their study, published in Nature Geoscience by an interdisciplinary team of biologists, oceanographers and hydrologists, used computer models to simulate the meltwater to see where currents take it and what effect it could have on the ocean. Renato Castelao, one of the researchers and an associate professor of marine science for the University of Georgia, said one of the biggest discoveries of the study was the surprising final destinations of the ice sheets as they melt into the ocean each summer.

Read More