WQ301-R

Used Global Water WQ301 Conductivity Sensor

Used Global Water WQ301 Conductivity Sensor

Description

Global Water's WQ301 conductivity sensor is a rugged and reliable water conductivity measuring device.

Features

  • Measure conductivity at any depth
  • Fully encapsulated electronics in stainless steel housing
  • 4-20 mA output
Free Shipping on this product
Your Price
$391.00
In Stock

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Global Water’s WQ301 Conductivity Sensor is a rugged and reliable water conductivity measuring device. The WQ301 offers a rapid and non-destructive way to measure the ion content in a solution. The conductivity sensor is molded to 25' of marine grade cable. The conductivity sensor’s output is 4-20 mA with a three wire configuration. The unit’s electronics are completely encapsulated in marine grade epoxy within a stainless steel housing.

Notable Specifications:
  • Output: 4-20 mA
  • Range: 0 to 10,000 μS
  • Accuracy: 1% full scale
  • Maximum Pressure: 50 psi
  • Operating Voltage: 12 VDC (± 5%)
  • Current Draw: 0.8 mA plus sensor output
  • Warm-up Time: 3 seconds minimum
  • Operating Temperature: -40° to +55°C
  • Temperature Compensation: 2% per °C
  • Size of Probe Open Water: 1" dia. x 12" long (3.175cm dia. x 30.5cm) Online: 2.5" dia. x 15.5" long (6.35cm dia. x 39.4cm)
  • Weight Open Water: 8 oz (227 g) Online: 22 oz (624 g)
  • Image Part # Product Description Price Stock Order
    Used Global Water WQ301 Conductivity Sensor WQ301-R Used WQ301B conductivity sensor with 0-10,000 uS range, 25 ft. cable
    $391.00
    In Stock

    In The News

    What is Conductivity?

    UPDATE : Fondriest Environmental is offering their expertise in conductivity through their new online knowledge base. This resource provides an updated and comprehensive look at conductivity and why it is important to water quality. To learn more, check out: Conductivity, Salinity and TDS . Salinity and conductivity  measure the water's ability to conduct electricity, which provides a measure of what is dissolved in water. In the SWMP data, a higher conductivity value indicates that there are more chemicals dissolved in the water. Conductivity measures the water's ability to conduct electricity. It is the opposite of resistance. Pure, distilled water is a poor conductor of electricity.

    Read More

    Army Corps of Engineers Protects River Wildlife

    A complex series of locks and dams up and down the Ohio River enable interstate commerce, travel and recreation by maintaining a usable pathway for watercraft, but come with the inevitable byproducts of disrupting the river’s natural systems. To combat this, the U.S. Army Corps of Engineers uses a complex monitoring and response technology designed to minimize the negative impacts of dredging on the river ecosystem. Steven Foster, a limnologist with the Corps Water Quality Team, works at the Robert C. Byrd Lock and Dam in Gallipolis Ferry, West Virginia. He said one key area he focuses on is the welfare of mussels in the river. River dredging can smother mussel beds, so Foster and the team of engineers monitor the beds to ensure their safety.

    Read More

    Researchers Track Glacial Meltwater On Its Surprising Journey

    While the scientific community has formed its consensus on how ice sheets are shrinking in and around Greenland, some researchers are tracking what happens to the meltwater as it drains into the ocean each summer. Their study, published in Nature Geoscience by an interdisciplinary team of biologists, oceanographers and hydrologists, used computer models to simulate the meltwater to see where currents take it and what effect it could have on the ocean. Renato Castelao, one of the researchers and an associate professor of marine science for the University of Georgia, said one of the biggest discoveries of the study was the surprising final destinations of the ice sheets as they melt into the ocean each summer.

    Read More