05631C

YOUNG Wind Line Driver

YOUNG Wind Line Driver

Description

The YOUNG 05631C wind line driver converts signals from the wind sensor to 4 to 20 mA current loop values.

Features

  • Converts signals from the wind sensor to 4 to 20 mA current loop values
Free Shipping on this product
Your Price
$506.00
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?
Notable Specifications:
  • Power Requirement: 12-30 VDC
  • Temperature Range: -50 to 50 C (-58 to 122 F)
  • Inputs: YOUNG Wind Monitor
  • Outputs: 4 to 20 mA
  • Wind Speed: 0 to 100 M/S, Wind Direction: 0 to 360
  • Accuracy: +/-1% FS over temperature and supply voltage range.
  • Dimensions: 110 mm W x 75 mm H x 56 mm D (4.3 in W x 2.9 in H x 2.2 in D)
  • Mounting: U-bolt for vertical pipe 25-50mm (1- 2 in) Dia
Image Part # Product Description Price Stock Order
YOUNG Wind Line Driver 05631C Wind line driver for use with 05106, 4-20 mA outputs
$506.00
Drop ships from manufacturer
YOUNG Wind Line Driver 05638C Wind line driver for use with 05108, 4-20 mA outputs
$516.00
Drop ships from manufacturer
Image Part # Product Description Price Stock Order
YOUNG Sensor Cables 18723 Sensor cable, 2 pair shielded, 22 AWG, per ft.
$0.66
Drop ships from manufacturer

In The News

UNC's industry-standard water quality profiling platforms get upgrade

The University of North Carolina Institute Of Marine Sciences has a history with profiling platforms. UNC engineers and scientists have been building the research floaters for 10 years in a lab run by in Rick Luettich , director of the institute. UNC scientists and engineers developed their own autonomous vertical profilers to take water quality readings throughout the water column.  They have three profilers  placed in the New and Neuse rivers. The profilers are designed to drop a payload of sensors to an allotted depth at set time intervals. Instruments attached take readings continuously on the way down and up. Data collected by the profilers has been used to study water related issues such as infectious disease and sediment suspension.

Read More

USGS weather station network monitors Arctic Alaska's climate

When the U.S. Geological Survey began building their climate and permafrost monitoring network in Arctic Alaska in 1998, there wasn't much precedent for how to build the infrastructure for the instruments in the region's unforgiving environment. That meant the scientists had to learn the particulars on the fly. For example: On the great expanse of flat, barren tundra, a weather station sticks out like a sore thumb to a curious grizzly bear. "The initial stations were pretty fragile," said Frank Urban, a geologist with the USGS Geosciences and Environmental Change Science Center. "So the bear and those stations--the bear won every single time without any problem.

Read More

USGS Scientists Identify Causes of High Concentrations of Radium in Aquifer Water

What exactly is happening far beneath our feet is typically a bit mysterious, requiring some special effort to study. Starting in the 1950s, reports of radium concentrations in excess of 5 picocuries per liter (pCi/L) in water from the Cambrian-Ordovician aquifer system started scientists thinking about the issue of radium in this massive aquifer which provides more than 630 million gallons of water each day to the public supply in Iowa, Illinois, Minnesota, Michigan, Wisconsin, and Missouri. Now, USGS scientists have published new research results, available online here , revealing how much radium is in the aquifer, and shedding light on how it gets there.

Read More