605203

YSI 2003 Polarographic Dissolved Oxygen Sensor

YSI 2003 Polarographic Dissolved Oxygen Sensor

Description

The YSI 2003 polarographic dissolved oxygen sensor provides reliable DO readings and includes the 5908 yellow 1.25 mil PE membrane kit.

Features

  • Dissolved oxygen sensor for the YSI Pro Series handheld meters
  • Easily inserts into the probe module and cable assembly
  • Compatible with YSI 5906, 5908, or 5909 screw-on cap membranes
List Price
$185.00
Your Price
$175.75
In Stock

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The YSI 2003 is designed for use with the Pro20, Pro20i, Pro1020, Pro2030, and Pro Plus instruments; cables must be ordered separately. It can be used on 60520 (DO), 6052030 (DO/conductivity), 6051020 (DO/ISE), and 605790 Quatro (DO/conductivity/ISE/ISE) cables.

The YSI 2003 comes with six membrane caps and bottle of solution.

Notable Specifications:
  • 1-year warranty
What's Included:
  • (1) YSI 2003 DO module
  • (1) 5908 cap membrane kit
  • (1) Instruction sheet
  • (1) Hex wrench
  • (1) Set screw
Image Part # Product Description Price Stock Order
YSI 2003 Polarographic Dissolved Oxygen Sensor 605203 2003 polarographic DO sensor with yellow 1.25 mil PE membrane kit, Pro Series
$175.75
In Stock
Image Part # Product Description Price Stock Order
YSI 5908 DO Cap Membrane Kit 605306 5908 PE yellow 1.25 mil cap membrane kit, 550A, DO200, 559 & 2003 polarographic sensors
$57.00
In Stock
Additional Product Information:

Questions & Answers

| Ask a Question
How does a Polarographic DO sensor work?
In a polarographic sensor, the cathode is gold and the anode is silver. The system is completed by a circuit in the instrument that applies a constant voltage of 0.8 volts to the probe, which polarizes the two electrodes. The sensor operates by detecting a change in this current caused by the variable pressure of oxygen while the potential is held constant at 0.8 V. The more oxygen passing through the membrane and being reduced at the cathode, the greater the signal increases.
Why is the Polarographic sensor warranted for 1 year while the Galvanic is only warranted to 6 months.
Galvanic sensors continually consume the anode, even when the instrument is off. The consumption of the polarographic sensor stops when the instrument is turned off, giving it a longer sensor life.
Is this sensor approved by the EPA?
Yes, the proven technology of the steady-state sensor is approved by the US EPA for compliance monitoring and reporting.

Related Products

In The News

Mississippi Gulf Coast fish kill expected to continue

Officials at the Mississippi Department of Marine Resources say that a recent fish kill along the state’s Gulf coast is the largest they’ve seen, according to KVUE . The fish kill has brought dead crabs, eels and stingrays ashore. Beachgoers were disturbed by the large-scale kill, but experts explained that conditions this year were to blame. With higher temperatures and low dissolved oxygen near the sea floor, creatures that live there were more likely to be affected. The fish kill, beginning July 1, was the first of 2013 for the area. It was expected to last several more days, but lessen over that period.

Read More

The Arizona Department of Environmental Quality's Water Quality Division

With an average rainfall of only 12.5 inches per year and a population that's growing faster than the country's , Arizona is a state that faces unique challenges, especially when it comes to clean, safe water. The Water Quality Division of the Arizona Department of Environmental Quality (ADEQ) protects and enhances public health and the environment by monitoring and regulating drinking water. And although they make use of the latest scientific methods and new technology, given the current state of Arizona's water system, they also rely upon low-tech equipment and cooperation from members of the community to monitor water quality in the state. Team members in the Groundwater Protection Program work to sample, test and characterize groundwater quality in all 51 of Arizona’s basins.

Read More

Latest Satellite and Eddy Covariance Data Shows Vulnerability of Trees to Drought

William Anderegg, assistant professor of biology at the University of Utah, has spent years studying drought-stricken trees all over the world. As climate change is expected to cause increased drought severity in the future, the work of Anderegg and his colleagues becomes increasingly important. In a previous interview for the Environmental Monitor , Anderegg found that a tree’s hydraulic safety margin was the best indicator of whether a tree would survive drought. The hydraulic safety margin is an expression of how the tree reacts under drought conditions, where there is very little water being pulled up the tree’s transport system and air is being pulled up instead. “It’s like a heart attack for the tree,” he noted.

Read More