603402

YSI 3402 Glass Dip Conductivity Cell

YSI 3402 Glass Dip Conductivity Cell

Description

3402 glass dip cell, cell constant = 0.1/cm, 4 ft. cable

Free Shipping on this product
List Price
$560.00
Your Price
$532.00
Usually ships in 3-5 days

Shipping Information
Return Policy
Why Buy From Fondriest?
Image Part # Product Description Price Stock Order
YSI 3402 Glass Dip Conductivity Cell 603402 3402 glass dip cell, cell constant = 0.1/cm, 4 ft. cable
$532.00
Usually ships in 3-5 days

Related Products

In The News

What is Conductivity?

UPDATE : Fondriest Environmental is offering their expertise in conductivity through their new online knowledge base. This resource provides an updated and comprehensive look at conductivity and why it is important to water quality. To learn more, check out: Conductivity, Salinity and TDS . Salinity and conductivity  measure the water's ability to conduct electricity, which provides a measure of what is dissolved in water. In the SWMP data, a higher conductivity value indicates that there are more chemicals dissolved in the water. Conductivity measures the water's ability to conduct electricity. It is the opposite of resistance. Pure, distilled water is a poor conductor of electricity.

Read More

Algae Bloom Spawns New Water Monitoring Program In Utah Lake

The result of a harmful algae bloom in the summer of 2016, the enhanced Utah Lake water quality monitoring program, reached its one year milestone in September. Located near the Provo and Orem metropolitan areas, the lake is Utah’s largest freshwater body and a popular water recreation and fishing spot. In the summer of 2016, recreation users reported an unusual amount of scum on the surface of the water. Utah Lake is monitored by the Utah Division of Water Quality (UDWQ). Prior to the 2016 harmful algae bloom (HAB), the UDWQ successfully used regular water sample testing and citizen reporting to stay on top of any incidents.

Read More

Data Buoys Study Turbid Water Environments in Lake Erie Basin

What started as a study into a relatively unexamined type of cyanobacteria has turned biologists from Bowling Green State University into an integral part of the effort to monitor and protect the drinking water in Sandusky, Ohio. Dr. George Bullerjahn, the Professor of Research Excellence at Bowling Green State University, has done considerable work in the study of beneficial cyanobacterial organisms in the eastern and central basins of Lake Erie. His current project is focused on the growth of the toxic cyanobacterium Planktothrix in Sandusky Bay. Over the course of his career Bullerjahn has collaborated with Dr. Steven Wilhelm from the University of Tennessee.

Read More