00-1002

ATI C16 Chlorine Sensor Module (2 PPM)

ATI C16 Chlorine Sensor Module (2 PPM)

Description

Chlorine sensor module, 0-1/5 PPM (2 PPM Standard)

Free Shipping on this product
Your Price
$325.00
Drop ships from manufacturer

Shipping Information
Return Policy
Why Buy From Fondriest?
Image Part # Product Description Price Stock Order
ATI C16 Chlorine Sensor Module (2 PPM) 00-1002 Chlorine sensor module, 0-1/5 PPM (2 PPM Standard)
$325.00
Drop ships from manufacturer

Related Products

In The News

Collaborative Southeast Nexus study examines region's air quality

While much of the world has experienced a warmer climate in recent years, the U.S. Southeast has cooled. Scientists want to know why because the answer could reveal keys to improving air quality and understanding climate change. To study the cooling Southeast, scientists at several institutions have joined forces to conduct the Southern Atmosphere Study (SAS), the largest study on southeastern U.S. air quality since the 1990s. These include the U.S. Environmental Protection Agency, National Center for Atmospheric Research, National Science Foundation, National Oceanic and Atmospheric Administration and the Electric Power Research Institute. Five air quality studies fall under the SAS umbrella.

Read More

Hydrogen Sulfide Monitoring - US Army Corps of Engineers

Project Overview NexSens field engineers installed hydrogen sulfide monitoring systems with real-time radio telemetry at several reservoirs in northeast Ohio, where many of the reservoirs have become problem areas for emitting H2S gases as a result of improper restoration of strip-mined land prior to the Surface Mining Control and Reclamation Act of 1977. Hydrogen sulfide (H2S), a colorless, flammable gas that smells like rotten eggs, is a hazardous substance to both people and the environment. When exposed to even low levels of hydrogen sulfide gas, people can experience eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs.

Read More

Buoy Data Powers Muskegon Lake Hypoxia Research

Sixty years ago, the famous ecologist George Evelyn Hutchinson wrote, “A skillful limnologist can possibly learn more about the nature of a lake from a series of oxygen determinations than from any other chemical data.†Since then, oxygen measurements have only grown more relevant as the problem of hypoxia expands in lakes, oceans and estuaries across the globe.   But ecologists’ ability to measure oxygen has grown too. When Hutchison wrote that in 1957,  the “series of oxygen determinations†produced by a data buoy like the one floating on Muskegon Lake in Michigan was unthinkable.

Read More