ATI Q46/76 Turbidity Monitor

The Q46/76 Monitor is designed to meet the needs of both municipal and industrial water treatment for reliable, low-range turbidity measurement.

Features

  • Optional Q-Blast removes build-up on the sensor, reducing sensor maintenance
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46/76 Turbidity MonitorQ46/76 Turbidity monitor
Request Quote
Drop ships from manufacturer
ATI Q46/76 Turbidity Monitor
Q46/76
Turbidity monitor
Drop ships from manufacturer
Request Quote

Overview
ATI’s Model Q46/76 Turbidity Monitor is designed to meet the needs of both municipal drinking water systems and industrial water treatment for reliable, low-range turbidity measurement. Using an infrared or energy source in this 90 degree scatter measurement, the system provides high sensitivity measurement with unmatched zero stability. Turbidity measurements down to 0.001 NTU or as high as 2000 NTU can be measured with the same monitor, eliminating the need for separate high and low range instruments.

Turbidity Sensor
The turbidity sensor used in the Q46/76 monitor is a planer sensor with the light source and photo detector mounted on a flat face. Lenses in front of the light source direct the beam of light at a 45-degree angle into the sample. Another lens in front of the photo detector collects the 90-degree scattered light and directs it to the detector. The signal generated by the detector is amplified inside the sensor for transmission to the display unit. Periodic pulsing of the light source allows the sensor zero to be adjusted automatically for improved stability in low-range applications. Turbidity sensors are available for measurement in a pressurized flowcell or for direct submersion in open tanks. A 1-1/2” flow T assembly is also available for direct in-line measurements. The flowcell is required for very low measurements (0-2 NTU), while the submersion unit may be used for higher turbidity applications such as wastewater effluent or raw water.

Sensor Flowcell
Air bubbles are a common problem in many turbidity systems. ATI’s turbidity sensor is designed to operate under pressure to eliminate the sample degassing that often causes air bubble errors. Sample pressure remains constant until the sample exits the measuring chamber, resulting in a more reliable measurement. The turbidity electronics unit is an AC or DC powered instrument providing an LCD display of turbidity value, as well as indication of alarm status and instrument diagnostics. The NEMA 4X can be wall, pipe, or handrail mounted using the universal mounting kit included with each system.

Turbidity Monitor
The monitor provides display of turbidity over a variety of operating ranges. The minimum display range of 0-2 NTU provides resolution down to 0.001 NTU and is suitable for almost any final filter monitoring application. Ranges of 0- 20 or 0-200 NTU are available for raw water or clarifier effluent monitoring. The Q46/76 provides three programmable alarms with SPDT alarm relays are included, as well as two isolated 4-20 mA outputs. The analog outputs may be programmed for full-scale outputs as low as 0-0.2 NTU, and can be inverted if desired.

Q46/76 monitors also provide sensor diagnostic functions to warn of condition that cause inaccurate or invalid readings. The sensor is continuously monitored for optical fouling, and will display an alarm message when the sensor requires cleaning In addition, the sensor will detect the lack of water in the flowcell and provide a “dry cell” when an air interface is detected. These alarm conditions will cause a third alarm relay to activate, which can be used to indicate these conditions remotely.

Q-Blast
ATI’s Q-Blast option provides the ideal answer for submersible turbidity applications such as wastewater effluent.  Employing a unique “air-blast” cleaning method, sensors can be cleaned as often as necessary without operator attention.  Pulses of pressurized air delivered through a nozzle at the tip of the sensor remove accumulated solids from critical sensing surfaces, resulting in accurate and reliable measurements.

The Q-Blast Auto-Clean assembly is housed in a NEMA 4X enclosure suitable for indoor or outdoor use.  The system includes an integral compressor and air-pulse control components, with a power supply for the entire air supply system incorporated into the design.  A simple connection to the Q46/76 monitor provides the sequencing for the system and allows the operator to select cleaning frequencies as often as once every hour to as little as once every 999 hours.  To insure performance in extreme cold conditions, a thermostatically controlled heater is included in the assembly, allowing operation down to -40°C. 

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Snowmelt, Stormwater and Contamination in Saskatoon

In Saskatoon, Saskatchewan, pollution and runoff from storms and snowmelt are getting the close look they deserve, and there’s much more to examine. Weather, from heavy spring storms to long months of snow and freezing temperatures, makes the polluting potential of runoff and snowmelt greater than and different from warmer climate cities, said Garry Codling in an email. In Saskatoon, potentially harmful elements in runoff can exceed the guidelines for runoff set by the Canadian government.

Read More

Appalachian streams show long, slow recovery from mining’s lingering effects

Appalachia may be as closely associated with mining as it is to anything else. That close relationship will leave its mark on the area’s streams long after the last mine closes. A nine-year study recently published in Science of the Total Environment shows that long after mining activity stops and the land is left to heal, streams and stream life are slow to recover. “We could be really fine point and say that some of them seem to be recovering very, very slowly,” said Carl Zipper, professor emeritus of environmental science at Virginia Tech University . Most of the streams studied didn’t show signs of recovery.

Read More

Dissecting the Algae Blooms of Montana’s “Unique Gem” the Smith River

An unusual nuisance is slowly growing into an inexplicable problem for researchers at Montana’s Department of Environmental Quality . For the last five years, a native species of algae called Cladophora has covered large portions of the Smith River, one of the state’s most popular waterways for boating, fishing and recreating. And scientists don’t know why. “It’s just unusual. I don’t know if it’s extreme for the state of Montana as other systems have had Cladophora problems as well. But it’s most unusual due to the lack of land use changes,” said Chace Bell, a water quality assessment specialist with the Montana DEQ.

Read More