ATI Q46/84 Hydrogen Peroxide Monitor

The ATI Model Q46/84 Hydrogen Peroxide Monitor is designed to continuously monitor processes that utilize hydrogen peroxide for bleaching or disinfection purposes.

Features

  • Available with constant head or sealed flowcell configuration
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46/84 Hydrogen Peroxide MonitorQ46/84 Hydrogen peroxide monitor
Request Quote
Drop ships from manufacturer

Hydrogen peroxide (H2O2) is an extremely strong oxidizer widely used in bleaching applications in the paper industry. It has also been used in a variety of applications including disinfection, odor control, oxygenation, and cyanide oxidation. It is frequently used in wastewater collection systems to remove hydrogen sulfide that destroys concrete pipes and manhole structures. Peroxide applications in aqueous systems, like most chemical treatment processes, function most efficiently with accurate measurement and control.

ATI’s Model Q46/84 Hydrogen Peroxide Monitor is designed to continuously measure the concentration of H2O2 in aqueous systems. Using a direct peroxide sensor, the unit responds rapidly to changes in concentration, enabling operators to control chemical feed to maintain specific targets. With both digital and analog communications available, the Q46 is adaptable to a wide variety of peroxide monitoring applications.

Hydrogen Peroxide sensors are amperometric devices isolated from the water by a peroxide permeable membrane. As peroxide diffuses through this membrane, it comes in contact with an active electrode and is oxidized on the surface. The net effect is that the sensor generates a current proportional to H2O2 concentration. An integral RTD in the sensor provides for automatic temperature compensation, allowing the sensor to operate accurately over a range of 0-50°C.

Peroxide sensors are capable of operating over a fairly broad concentration range, from a low range of 0-2 PPM up to a high range of 0-200 PPM. Systems will operate with good sensitivity down to 0.05 PPM and respond to changes in concentration within about 60 seconds, making them useful for automatic control.

Hydrogen Peroxide sensors require a steady flow of sample across the membrane at the tip of the sensing assembly.  ATI offers options for flowcells, including the standard constant-head overflow system, and a sealed flowcell for pressures up to 50 PSI. For simplicity of installation, complete flow control assemblies are available. Panel assemblies are available with or without a flow switch and can greatly reduce installation time.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Birds, Fish and Shifting Sediment; How Lake Erie Buoys Measure It All

Since its population bottomed out, the federally-endangered Piping Plover in the Great Lakes has made a comeback for the ages.  A population that once measured approximately 17 pairs and rebounded, hitting 76 pairs in 2017. The same year that count was made, the plovers had also returned to Gull Point, a nesting location that hadn’t been used in more than 60 years.   In an effort to understand some of the conditions that have allowed this species to return to its habitat, researchers have directed their attention toward a curious instrument for help. A buoy that floats off the coast of Presque Isle State Park , near where Gull Point is located.

Read More

Much remains unknown about sharks. The Cal State Shark Lab wants to change that

Thirty years ago, white shark sightings near California’s beaches almost never happened. For Chris Lowe, who was a graduate student at California State University’s Shark Lab at the time, spying a dorsal fin from one of the ocean’s top predators was very rare. Prior to the mid-90’s, an expansive commercial fishing operation and the loss of marine animals decimated white shark populations. If their food wasn’t being hunted, sharks were getting caught in gill nets. At that point, they would be killed anyways before getting brought to the market to be sold. Then in 1994, California residents approved propositions that banned gillnets in state waters and enacted protections for the white shark.

Read More

REASON Project Puts Water Quality Instrumentation in Dams

Where and how to monitor water quality is always a challenge, particularly in complex aquatic ecosystems. The new REASON Project from a team at Clarkson University is working to demonstrate the utility of using water quality instrumentation in dams on major rivers in the Great Lakes system. Clarkson University Professor of Biology Michael Twiss spoke with EM about the new approach their team is taking at the Moses-Saunders Power Dam across the St. Lawrence River and the benefits the development of smart infrastructure such as this might offer. “The upper St. Lawrence River is defined as that which leaves Lake Ontario and is just upstream from the city of Montreal,” explains Dr. Twiss.

Read More