Q46/88

ATI Q46/88 Suspended Solids Monitor

ATI Q46/88 Suspended Solids Monitor

Description

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications.

Features

  • Uses backscatter to allow solids measurements at much higher levels
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

ATI’s Model Q46/88 Suspended Solids Monitor provides real time monitoring of suspended solids in a variety of water and wastewater applications. A submersible sensor immersed in process tanks or effluent channel senses particulates in the water using an optical backscatter technique that allows measurement over a wide range. Results are displayed on the Q46 electronic unit mounted near the sensor with a variety of outputs provided as standard.

Monitoring suspended solids in wastewater and industrial process water can be useful for  either process control or for alarming of unusual conditions. In biological treatment systems, monitoring suspended solids in the aeration tank can assist operators in maintaining optimum MLSS (Mixed Liquor Suspended Solids) concentration. In industrial clarifier's, suspended solids water quality monitoring can warn of upset conditions that might result in the discharge of solids that exceed plant permits.

Suspended solids sensors are optical devices operating in the infrared region. Unlike turbidity sensors that use 90 degree scatter to optimize sensitivity, suspended solids sensors use “backscatter” to allow solids measurements at much higher levels. Operation with infrared light ensures very long sensor life and minimizes the effects of changing sample color.

Sensors are designed to withstand the rigorous conditions of wastewater and industrial process streams and to last for years of service with nothing more than occasional cleaning of the sensing surface. There are no protruding surfaces near the sensing element to avoid accumulation of fibrous materials. The sensor is simply pipe mounted using mounting adapters available from ATI.

Optical sensors used for monitoring biologically active systems such as aeration tanks or aerobic digestors will require periodic cleaning to maintain the integrity of the measurement. Biological slime deposited on the optical surface will degrade the ability to transmit IR light into the sample. The frequency of cleaning varies widely depending on the turbulence in the process. Course bubble diffusion systems tend to scour the sensor while fine bubble diffusion systems result in more rapid sensor fouling.
 
Cleaning can be done manually by simply wiping the sensor as needed, but ATI also offers an automatic air-blast cleaning system as an option. The “Q-Blast” air cleaning system is controlled by the Q46/88 Suspended Solids Monitor and provides a compact air compressor system that periodically applies pulses of compressed air across the optical surface to remove accumulated biofouling. This system greatly reduces the requirement for manual maintenance, with cleaning frequency programmed to occur as often as necessary.

Image Part # Product Description Price Stock Order
ATI Q46/88 Suspended Solids Monitor Q46/88 Suspended solids monitor Usually ships in 1-2 weeks

In The News

Buttonbush Swamps, Bald Eagles, Soras and More: Ashland University’s Black Fork River Wetlands Environmental Studies Center Showcases Wetlands Wildlife and Habitats

Growing from a 38-acre purchase in 1998 to 298 acres in 2004 to the 305 acres it encompasses today; the Black Fork River Wetlands features habitats not found just anywhere, including buttonbush swamp, swamp forest, marsh, riparian corridor and uplands habitats. Beavers make their homes there, as well as trumpeter swans, bald eagles, soras and sandhill cranes. While it may seem picturesque and undisturbed, it is in fact embattled due to human activity on all sides. “It’s a multi-use area,” says Jenna Binder, a visiting Assistant Professor in Ashland University’s Biology and Toxicology Department. “It’s strongly influenced by the heavy agriculture in this area of Ohio. Oil and gas industry fracking is also being done in the area.

Read More

AS IF: North Carolina Biological Station Inspires Researchers and Artists to New Heights

Biological field stations make it possible for researchers all over the country to conduct environmental research. While some field stations have artist residencies, art is typically not the main focus of the biological station. Not so at Bakersville, North Carolina’s new AS IF Center (Art + Science In The Field) , which just opened its doors in March 2018. At AS IF, researchers and artists are deliberately invited to commingle, collaborate and create new things together. Far from being on the periphery or existing as an afterthought, artists are considered to be on parity with researchers at AS IF, the one energized by the other’s perspective.

Read More

Floating, Diving Robots in the Southern Ocean

The polar regions of the world have always a challenge for scientists to explore and study. Even logistics that are typically no more than passing concerns under other circumstances such as transportation become major problems during polar wintertime. Now, r esearchers are reporting on their use of hundreds of oceanic floats that are drifting and diving their way through the Southern Ocean, including under its ice, with surprising results. Happy robotic wanderers EM spoke with Dr. Alison Gray , assistant professor of physical oceanography at the University of Washington , to find out more about the work, the robots, and the significance of the findings in improving our understanding of the global climate and this poorly studied region.

Read More