Q46C2

ATI Q46C2 2-Electrode Conductivity Monitor

ATI Q46C2 2-Electrode Conductivity Monitor

Description

ATI's Model Q46C2 Conductivity Monitor provides the reliable and accurate low-level measurements required for high purity water systems.

Features

  • 2-Electrode style sensor allows the sensor to be used from 0-20 to 0-2,000 uS range
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
List Price
$$$$$
Your Price
Get Quote

Drop ships from manufacturer
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Low-level conductivity measurements are essential for monitoring a variety of high purity water systems. The proper operation of deionizers, reverse osmosis membranes, ion exchange systems, and heat exchangers require constant monitoring to ensure high quality production.

ATI’s Model Q46C2 Conductivity Monitor provides the reliable and accurate low-level measurements required for such high purity water systems. Monitors provide large, easy-to-read LCD displays with a second display line for indication of temperature or other operational information. And for those applications where results in resistivity units are preferred, Q46C2 monitors can be programmed to display readings in Meg-ohm units instead of microSiemens.

Q46C2 monitors can also be configured to measure and display the concentration of chemicals used in various process applications. The user defined concentration table requires data on both concentration vs. conductivity and temperature vs. conductivity for the chemical of interest. The user can enter six data points each for concentration and conductivity within the specified measuring range. Temperature compensation can either be made by custom compensation table or a single linear compensation factor.

For applications where there are several chemicals dissolved in solution, the Q46C2 monitor can be configured to measure and display the concentration of total dissolved solids (TDS). The user simply enters the TDS factor that best converts the process conductivity into concentration units. Temperature compensation can either be made by custom compensation table or a single linear compensation factor.

Image Part # Product Description Price Stock Order
ATI Q46C2 2-Electrode Conductivity Monitor Q46C2 2-Electrode conductivity monitor Drop ships from manufacturer

In The News

Buttonbush Swamps, Bald Eagles, Soras and More: Ashland University’s Black Fork River Wetlands Environmental Studies Center Showcases Wetlands Wildlife and Habitats

Growing from a 38-acre purchase in 1998 to 298 acres in 2004 to the 305 acres it encompasses today; the Black Fork River Wetlands features habitats not found just anywhere, including buttonbush swamp, swamp forest, marsh, riparian corridor and uplands habitats. Beavers make their homes there, as well as trumpeter swans, bald eagles, soras and sandhill cranes. While it may seem picturesque and undisturbed, it is in fact embattled due to human activity on all sides. “It’s a multi-use area,” says Jenna Binder, a visiting Assistant Professor in Ashland University’s Biology and Toxicology Department. “It’s strongly influenced by the heavy agriculture in this area of Ohio. Oil and gas industry fracking is also being done in the area.

Read More

AS IF: North Carolina Biological Station Inspires Researchers and Artists to New Heights

Biological field stations make it possible for researchers all over the country to conduct environmental research. While some field stations have artist residencies, art is typically not the main focus of the biological station. Not so at Bakersville, North Carolina’s new AS IF Center (Art + Science In The Field) , which just opened its doors in March 2018. At AS IF, researchers and artists are deliberately invited to commingle, collaborate and create new things together. Far from being on the periphery or existing as an afterthought, artists are considered to be on parity with researchers at AS IF, the one energized by the other’s perspective.

Read More

Floating, Diving Robots in the Southern Ocean

The polar regions of the world have always a challenge for scientists to explore and study. Even logistics that are typically no more than passing concerns under other circumstances such as transportation become major problems during polar wintertime. Now, r esearchers are reporting on their use of hundreds of oceanic floats that are drifting and diving their way through the Southern Ocean, including under its ice, with surprising results. Happy robotic wanderers EM spoke with Dr. Alison Gray , assistant professor of physical oceanography at the University of Washington , to find out more about the work, the robots, and the significance of the findings in improving our understanding of the global climate and this poorly studied region.

Read More