ATI Q46C4 4-Electrode Conductivity Monitor

The Q46C4 4-Electrode Conductivity Monitor is the accurate and reliable solution for monitoring almost any water-based process.

Features

  • 4-Electrode style sensor allows the sensor to be used over 0 to 2,000,000 uS range
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46C4 4-Electrode Conductivity MonitorQ46C4 4-Electrode conductivity monitor
Request Quote
Drop ships from manufacturer

While the theory of monitoring conductivity is simple, in practice it can be very frustrating. While simple 2-electrode sensors are inexpensive and can provide accurate data, continuous monitoring of even relatively clean water can foul the electrodes and degrade the measurement. Maintaining accuracy is made more difficult when the amount of solids dissolved in the process varies over a wide concentration range.

ATI’s Q46C4 4-Electrode Conductivity Monitor is the answer for monitoring almost any water-based process. Drinking water, plating bath solutions, cooling water, process wash water, or virtually any other aqueous system can be monitored accurately and reliably. The unique drive/control scheme used in the 4-electrode system allows a single sensor to be used in conductivity ranged from 0-200?S to as high as 0-2,000 mS (0-2 S.) For chemical mixing applications, a concentration display can be selected.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Digital Mayfly Data Logger Sensor Stations Monitoring Watersheds

For most humans, mayflies seem like a nuisance, hovering over the waterways as we try to enjoy them. However, for anyone hoping to monitor the health of watersheds, mayflies are important aquatic species—and now, a digital version of the mayfly is helping some scientists keep an eye on the water. Research scientist Dr. Scott Ensign , who serves as Assistant Director of the Stroud Water Research Center , spoke to EM about how the digital mayfly technology developed. “ Shannon Hicks is the engineer who started developing the Mayfly six or seven years ago,” explains Dr. Ensign.

Read More

Solar and Wind-Powered, Algae Tracking Boat Trialed in Florida

Time is of the essence when it comes to tracking algal blooms, and people everywhere are looking for solutions. In Florida, scientists from Florida Atlantic University Harbor Branch Oceanographic Institute (HBOI) recently trialed a solar-powered, algae-tracking sail boat developed by Navocean , Inc. Dr. Jordon Beckler of Florida Atlantic University (FAU) directs HBOI's Geochemistry and Geochemical Sensing Lab and spoke to EM about the trials and the boat. "This boat is so amazing when you see it in action," remarks Dr. Beckler. "Navocean originally contacted me a few years back about a demonstration when I was over at my previous institution in West Florida, and we brainstormed some scenarios for employing the boat for harmful algae bloom monitoring.

Read More

CICHAZ Biological Field Station Provides A Unique Educational and Research Experience in Mexico’s Huasteca Region

The story of the Centro de Investigaciones Científicas de las Huastecas "Aguazarca" (CICHAZ) Biological Field Station, a member of the Organization of Biological Field Stations ( OBFS ), starts with Dr. Gil Rosenthal, Professor of Biology and Chair of Ecology and Evolutionary Biology at Texas A & M University . Rosenthal has worked in the Huasteca region of Mexico since 1994 and for years kept his research equipment at a local ranch/hotel with the dream of one day having a field station where he could run experiments with collaborators and students. Since 2005, Rosenthal has been the Co-Director of the field station along with his wife, Dr.

Read More