Q46H/79S

ATI Q46H/79S Total Chlorine Stripping Monitor

ATI Q46H/79S Total Chlorine Stripping Monitor

Description

ATI’s Model Q46H/79S uses this same standard iodometric chemistry for measuring total chlorine, but with a unique sensing technique for measuring the released iodine.

Features

  • Measurement is made without contact between water sample and sensor
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
More Views
List Price
$$$$$
Your Price
Get Quote

Usually ships in 1-2 weeks
Shipping Information
Return Policy
Why Buy From Fondriest?

Details

Residual chlorine is found in many chemical forms in water systems. Residuals in clean water are often predominantly free chlorine while wastewater and cooling water can contain mixtures of free chlorine, combined chlorine, and organochlorine species. Measurement of residual chlorine in applications where only free chlorine (potable water) or only combined chlorine (chloraminated water) exist can often be monitored with direct sensor measurement. However, applications where a variety of chlorine forms can exist (wastewater effluent and some cooling water) require a more complicated measurement method. These applications generally require a “Total Chlorine” measurement and involve chemically converting all chlorine species into a single chemical form.

This is normally done by reacting the sample with pH 4 buffer and potassium iodide to convert various chlorine compounds into iodine. Many on-line monitors for total chlorine use this iodometric method, often measuring the current between two exposed electrodes to determine iodine concentration. ATI’s Model Q46H/79S uses this same standard iodometric chemistry, but with a unique sensing technique for measuring the released iodine. The system takes the reacted sample containing iodine and uses an air-stripping system to remove molecular iodine from solution. The gas-phase iodine from the water sample is channeled through a conditioning module and then directly to an iodine gas sensor. The result is that the iodine measurement is made without any contact between the water sample and the sensor. Contaminants in the sample that cause fouling and contamination of standard electrodes do not affect the Q46 system, providing greater operational reliability.

Image Part # Product Description Price Stock Order
ATI Q46H/79S Total Chlorine Stripping Monitor Q46H/79S Total chlorine stripping monitor Usually ships in 1-2 weeks

In The News

Rising Atmospheric CO2 Levels Affecting Cephalopod Behaviors

Carbon dioxide, CO2, is a waste product for animals, including humans. That means that too much of it can be dangerous. In humans, excessive exposure to CO2 can kill, but in lesser amounts it can also affect the blood's pH level, causing acidemia. Acidemia can cause nerve damage , including hallucinations, delirium, and seizures. Far less is known about the subtler effects of CO2 on cephalopods, but this is in large part because far less is known about cephalopods, generally. However, new research from scientists at James Cook University (JCU) in Australia reveals that rising levels of atmospheric CO2 may cause strange behavioral effects in cephalopods—effects that are likely to be dangerous to them.

Read More

Buoy Data Powers Muskegon Lake Hypoxia Research

Sixty years ago, the famous ecologist George Evelyn Hutchinson wrote, “A skillful limnologist can possibly learn more about the nature of a lake from a series of oxygen determinations than from any other chemical data.†Since then, oxygen measurements have only grown more relevant as the problem of hypoxia expands in lakes, oceans and estuaries across the globe.   But ecologists’ ability to measure oxygen has grown too. When Hutchison wrote that in 1957,  the “series of oxygen determinations†produced by a data buoy like the one floating on Muskegon Lake in Michigan was unthinkable.

Read More

Long-Term Monitoring Aids Scientists Studying Sea Star Wasting Mystery

Scientists working to solve the mystery of Sea Star Wasting Disease—and to learn more about the possible keystone species Pisaster ochraceus , the ochre sea star—are reaping the benefits of long-term monitoring of the species along the West Coast. Dr. Melissa Miner , a UC Santa Cruz researcher in the Department of Ecology and Evolutionary Biology, spoke with EM about her two decades of work with the Multi-Agency Rocky Intertidal Network and her recent efforts surrounding the ochre sea star. Keeping an eye on intertidal species In 2013, people began to notice that sea stars all along the West Coast were in the grip of a strange disease. The stars exhibited lesions and quickly succumbed, deteriorating and wasting away.

Read More