ATI Q46H/79S Total Chlorine Stripping Monitor

ATI’s Model Q46H/79S uses this same standard iodometric chemistry for measuring total chlorine, but with a unique sensing technique for measuring the released iodine.

Features

  • Measurement is made without contact between water sample and sensor
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Usually ships in 1-2 weeks
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46H/79S Total Chlorine Stripping MonitorQ46H/79S Total chlorine stripping monitor
Request Quote
Usually ships in 1-2 weeks

Residual chlorine is found in many chemical forms in water systems. Residuals in clean water are often predominantly free chlorine while wastewater and cooling water can contain mixtures of free chlorine, combined chlorine, and organochlorine species. Measurement of residual chlorine in applications where only free chlorine (potable water) or only combined chlorine (chloraminated water) exist can often be monitored with direct sensor measurement. However, applications where a variety of chlorine forms can exist (wastewater effluent and some cooling water) require a more complicated measurement method. These applications generally require a “Total Chlorine” measurement and involve chemically converting all chlorine species into a single chemical form.

This is normally done by reacting the sample with pH 4 buffer and potassium iodide to convert various chlorine compounds into iodine. Many on-line monitors for total chlorine use this iodometric method, often measuring the current between two exposed electrodes to determine iodine concentration. ATI’s Model Q46H/79S uses this same standard iodometric chemistry, but with a unique sensing technique for measuring the released iodine. The system takes the reacted sample containing iodine and uses an air-stripping system to remove molecular iodine from solution. The gas-phase iodine from the water sample is channeled through a conditioning module and then directly to an iodine gas sensor. The result is that the iodine measurement is made without any contact between the water sample and the sensor. Contaminants in the sample that cause fouling and contamination of standard electrodes do not affect the Q46 system, providing greater operational reliability.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

River Management On a Changing Planet

River management is inherently complex, demanding mastery of constantly dynamic conditions even when the climate is stable. As the climate changes, however, river management will become even more difficult and unpredictable—and old models and techniques are likely to fail more often. Now, researchers from around the world are calling for attention and change to how we manage and model the rivers of the world. Dr. Jonathan Tonkin , a Rutherford Discovery Fellow at New Zealand's University of Canterbury , spoke to EM about why he is arguing that current tools for river management are no longer enough as even historical baseline river ecosystem conditions themselves are changing. Dr.

Read More

A Floating Environmental Stewardship Classroom Visits Ohio

This summer a new way to learn about water recreation—and environmental stewardship—paddled into Ohio. With the help of the Toledo Metropolitan Area Council of Governments (TMACOG) , the US Environmental Protection Agency's (US EPA's) Urban Waters Program brought the Wilderness Inquiry Canoemobile “floating classroom” to Toledo for a few days. TMACOG Water Quality Planner Sara Guiher spoke to EM about the programming and the experience. “In August of 2018 we spoke with a representative from US EPA Urban Waters,” explains Guiher. “We received funding through them to bring programming to the area focused on urban water resources. The person that we talked to from US EPA suggested Canoemobile, which we had never heard of.

Read More

Restoring Native Brook Trout in North Carolina

The North Carolina Wildlife Resources Commission ’s Inland Fisheries Division has been working to restore brook trout in the state. Coldwater research coordinator Jacob Rash, who works with the brook trout team technicians on this project, spoke to EM about the work. “In North Carolina, brook trout are our only native trout species,” explains Mr. Rash. “With that come biological and ecological considerations as well as cultural importance. A lot of folks here grew up fishing for brook trout with their relatives, so it's an important species that we work to try to conserve. We've done quite a bit of work to figure out where those brook trout populations are and what they are, in terms of genetics.

Read More