ATI Q46N Dissolved Ammonia Monitor

ATI's Q46N provides a unique measurement technology for continuously monitoring dissolved ammonia.

Features

  • Amperometric sensor provides excellent repeatability over long periods of time
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46N Dissolved Ammonia MonitorQ46N Dissolved ammonia monitor
Request Quote
Drop ships from manufacturer

Continuous water quality monitoring of ammonia is becoming increasingly important for plant operations and process control. Unfortunately, on-line ammonia monitors are generally very expensive, complex, and labor intensive instruments. Most are automated versions of ammonia selective ion electrodes methods better suited to laboratory measurements. Others are automated colorimetric devices or instrumental methods that are difficult to justify on a cost basis.

ATI has developed a completely new approach to on-line monitoring of ammonia that is far less expensive and much simpler than conventional monitoring equipment. The Q46N Dissolved Ammonia Monitor uses reaction chemistry that converts ammonia in solution to a stable monochloramine compound equivalent in concentration to the original ammonia level. The chloramine concentration is then measured with a unique amperometric sensor that responds linearly to chloramines while eliminating interference from excess free chlorine in solution.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

A Lesson in Persistence: Taking On Cyanobacteria in Florida

As we hear more and more about algal blooms of different kinds across the United States, teams of scientists are working hard to ensure that they don't become our new normal. One project in Florida is taking a multi-disciplinary approach to the problem—including genetic analysis. The team's work is part of a full-court press in Florida recently, making a serious push to understand what is triggering more frequent blooms. Jose Lopez, Ph.D. , of Nova Southeastern University , the primary investigator on the genetic analysis portion of the project, spoke to EM about the project and his work on it. “This is a very good project,” explains Dr. Lopez. “We're excited about it, and it's a lesson in persistence.” Dr.

Read More

Keeping TABS on the Texas Gulf Coast

From extreme weather such as Hurricane Harvey to spills and other accidents, the Gulf Coast of Texas is no stranger to dangerous situations. This is where the data provided by the Texas Automated Buoy System ( TABS ) comes into the picture. Among the nation's most successful and longest-running coastal ocean-observing systems at the state level, the TABS real-time oceanographic buoy system monitors currents, waves, salinity, winds, and other parameters. Dr. Anthony Knap , director of Geochemical Environmental Research Group (GERG) and a Professor of Oceanography at Texas A&M University, spoke to EM about working with TABS. “TABS has been running now for 24 years,” explains Dr. Knap.

Read More

Watchful Eyes on One of Maine's Crown Jewels: Jordan Pond

Formed by a glacier, Jordan Pond is among Maine's clearest, most beautiful bodies of water. It's also a critical freshwater resource, and watchful eyes are protecting it. EM spoke with Dr. Rachel Fowler, Friends of Acadia's aquatic scientist, about her work monitoring Jordan Pond. A postdoctoral research scientist at the University of Maine, she is a member of a partnership among the National Park Service, the University of Maine Climate Change Institute, and Friends of Acadia that began deploying the Jordan Pond buoy in 2013. Canon provided the initial support for the project. Friends of Acadia is a nonprofit organization that supports different projects in the park.

Read More