ATI Q46S/66 Residual Sulfite Monitor

ATI's Model Q46S/66 Residual Sulfite Monitor provides the solution to dechlorination control of wastewater effluents.

Features

  • Sulfite ion is measured selectively by conversion to sulfur dioxide
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46S/66 Residual Sulfite MonitorQ46S/66 Residual sulfite monitor
Request Quote
Drop ships from manufacturer

Dechlorination of wastewater effluent is common practice in many wastewater treatment facilities throughout the U.S.  Strongly reducing sulfur compounds are used to eliminate chlorine residuals that might prove toxic to fish in the receiving stream.  Because residual chlorine discharge limits are often very close to zero, monitoring residual values to comply with regulations has become very difficult, and controlling residuals at values between zero and 10 or 20 parts-per-billion is often not achievable.

To meet stringent discharge limits, the sulfite or bisulfite used for dechlorination is added in slight excess, providing a small sulfite residual to insure complete dechlorination. ATI’s Model Q46S/66 provides operators with a reliable tool for maintaining a small sulfite residual while reducing excess chemical consumption due to overfeed.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

MIT undergrads characterize Kīlauea’s volcanic smog

“Vog” is a word that few know and use. But for people living near Hawaii’s Kīlauea, it’s the perfect mashup to describe what they deal with everyday: volcanic smog. Much of the vog that comes out of the volcano is comprised of sulfur dioxide, a compound toxic to humans and plants. It can react with components in the atmosphere to form sulfuric acid, a common component of acid rain. Particulate matter, water and carbon dioxide also float out of Kīlauea. Scientists already know that some of those emissions are toxic. They look to study the volcano’s eruption because it is unique. Kīlauea has been erupting non-stop since 1983.

Read More

Government Officials Ignore Health Risks Associated with E. coli in Boulder Creek

Since 2003 harmful bacteria Escherichia coli (E. coli) levels have created a health risk to recreational users in Boulder Creek. Boulder Creek has been designated as an impaired stream and is not meeting an EPA health-based water quality standard. Concentrations of E. coli increase from the mouth of Boulder Canyon to the University of Colorado-Boulder and beyond based upon data collected by the City of Boulder according to information published by the CU Independent and the Boulder Camera . EM spoke to environmental engineer Art Hirsch of the Boulder Waterkeeper , who is advocating for greater accountability from all entities that own property abutting the stream. “E.

Read More

New Monitoring Site for Ocean Acidification in American Samoa

The National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Ocean Observing System (PacIOOS) at the University of  HawaiĘ»i at Māno a , in collaboration with other partners, recently deployed a new ocean acidification (OA) monitoring site in Fagatele Bay National Marine Sanctuary , American Samoa. Derek Manzello , a coral ecologist with NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) in Florida, is the lead PI of ACCRETE: the Acidification, Climate and Coral Reef Ecosystems Team at AOML. Dr. Manzello connected with EM about the deployment. “ACCRETE encompasses multiple projects that all aim to better understand the response of coral reef ecosystems to climate change and/or ocean acidification,” explains Dr.

Read More