ATI Q46S/66 Residual Sulfite Monitor

ATI's Model Q46S/66 Residual Sulfite Monitor provides the solution to dechlorination control of wastewater effluents.

Features

  • Sulfite ion is measured selectively by conversion to sulfur dioxide
  • Contact outputs include two programmable control relays for control and alarm modes
  • Communication Options for Profibus-DP, Modbus-RTU, or Ethernet-IP
Your Price Call
Drop ships from manufacturer
ATI
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
ATI Q46S/66 Residual Sulfite MonitorQ46S/66 Residual sulfite monitor
Request Quote
Drop ships from manufacturer

Dechlorination of wastewater effluent is common practice in many wastewater treatment facilities throughout the U.S.  Strongly reducing sulfur compounds are used to eliminate chlorine residuals that might prove toxic to fish in the receiving stream.  Because residual chlorine discharge limits are often very close to zero, monitoring residual values to comply with regulations has become very difficult, and controlling residuals at values between zero and 10 or 20 parts-per-billion is often not achievable.

To meet stringent discharge limits, the sulfite or bisulfite used for dechlorination is added in slight excess, providing a small sulfite residual to insure complete dechlorination. ATI’s Model Q46S/66 provides operators with a reliable tool for maintaining a small sulfite residual while reducing excess chemical consumption due to overfeed.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

MIT undergrads characterize Kīlauea’s volcanic smog

“Vog” is a word that few know and use. But for people living near Hawaii’s Kīlauea, it’s the perfect mashup to describe what they deal with everyday: volcanic smog. Much of the vog that comes out of the volcano is comprised of sulfur dioxide, a compound toxic to humans and plants. It can react with components in the atmosphere to form sulfuric acid, a common component of acid rain. Particulate matter, water and carbon dioxide also float out of Kīlauea. Scientists already know that some of those emissions are toxic. They look to study the volcano’s eruption because it is unique. Kīlauea has been erupting non-stop since 1983.

Read More

A Lesson in Persistence: Taking On Cyanobacteria in Florida

As we hear more and more about algal blooms of different kinds across the United States, teams of scientists are working hard to ensure that they don't become our new normal. One project in Florida is taking a multi-disciplinary approach to the problem—including genetic analysis. The team's work is part of a full-court press in Florida recently, making a serious push to understand what is triggering more frequent blooms. Jose Lopez, Ph.D. , of Nova Southeastern University , the primary investigator on the genetic analysis portion of the project, spoke to EM about the project and his work on it. “This is a very good project,” explains Dr. Lopez. “We're excited about it, and it's a lesson in persistence.” Dr.

Read More

Keeping TABS on the Texas Gulf Coast

From extreme weather such as Hurricane Harvey to spills and other accidents, the Gulf Coast of Texas is no stranger to dangerous situations. This is where the data provided by the Texas Automated Buoy System ( TABS ) comes into the picture. Among the nation's most successful and longest-running coastal ocean-observing systems at the state level, the TABS real-time oceanographic buoy system monitors currents, waves, salinity, winds, and other parameters. Dr. Anthony Knap , director of Geochemical Environmental Research Group (GERG) and a Professor of Oceanography at Texas A&M University, spoke to EM about working with TABS. “TABS has been running now for 24 years,” explains Dr. Knap.

Read More