Extech 5.8mm VideoScope Camera Head with Macro Lens

The Extech VideoScope camera head with macro lens to use with the HDV600 VideoScope.

Features

  • 65ยบ field of view
Your Price $549.00
Usually ships in 1-2 weeks
Extech
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Extech 5.8mm VideoScope Camera Head with Macro LensHDV-5CAM-1RM 5.8mm VideoScope camera head with macro lens, 1m semi-rigid cable
$549.00
Usually ships in 1-2 weeks
Extech 5.8mm VideoScope Camera Head with Macro Lens HDV-5CAM-3RM 5.8mm VideoScope camera head with macro lens, 3m semi-rigid cable
$749.00
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
Extech HD600 High Definition VideoScope HDV600 High definition videoscope only
$1,699.00
Usually ships in 1-2 weeks
Extech Wired Handset with Articulating Probe HDV-TX1 Wired handset with 6mm diameter articulating probe, 1m semi-rigid cable
$1,449.00
Usually ships in 1-2 weeks
Extech Wired Handset with Articulating Probe HDV-TX2 Wired handset with 6mm diameter articulating probe, 2m semi-rigid cable
$1,699.00
Usually ships in 1-2 weeks
  • Resolution: 640 x 480 pixels
  • Length: 1m (3.3’)
  • Outer diameter: 5.5mm (0.22”)
  • Focus distance: 2 to 6cm (0.79 to 2.36”)
  • Housing: stainless steel
  • Field of view: 65º
  • Number for LED's: 4
  • Lamp output: 3500 Lux at 20mm
  • Operating temperature: 20 to 70°C (-4 to 158°F)
  • Storage temperature: -20 to 70°C (-4 to 158°F)
  • Warranty: 1 year
  • (1) Camera head with macro lens
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Climate Change Asymmetry Transforming Food Webs

Recent research from a University of Guelph (U of G) team reveals that warmer temperatures caused by climate change are forcing species to alter their behavior, causing food webs in Ontario lakes to transform. As temperatures warm, larger species hunt new prey in deeper waters, changing the ways nutrients and energy flow in lakes and triggering a “rewiring” of food webs. Dr. Timothy Bartley , study lead author and a post-doctoral researcher in the U of G's Department of Integrative Biology , spoke to EM about the work . “I got started on this when I first began graduate school and joined an ongoing project, which was a collaboration with the Ontario Ministry of Natural Resources and Forestry ,” explains Dr. Bartley.

Read More

New Technologies Reducing Uncertainty in Estimation of River Flow

Some of the most interesting data in the world of river and stream monitoring come at times when it's practically impossible to capture—during extreme weather events, for example. Timing alone makes capturing unusual events a challenge, and these kinds of issues have prompted researchers to use classic monitoring data along with new technologies to develop and improve hydraulic modeling for estimating river flows. Steven Lyon , a Conservation Scientist with The Nature Conservancy, Professor at Stockholm University and Associate Professor at The Ohio State University, spoke with EM about the research .

Read More

Cornell University Biological Field Station at Shackelton Point: Monitoring New York’s Largest Interior Lake for Sixty Years

Lars Rudstam, Professor of Aquatic Science at Cornell and Director of the Cornell University Biological Field Station at Shackelton Point, says that he has long held an interest in lakes in general, so naturally the Great Lakes, the largest freshwater lake system in the world, have held a fascination for him for many years. He also works on Oneida Lake, the largest lake wholly inside New York. Oneida Lake waters, traveling from the Lake to the Oneida River, then to the Oswego River, ultimately flow into Lake Ontario. “In addition to lakes in general and the Great Lakes, I have been especially interested in the impressive data series that has been collected for Oneida Lake,” Rudstam notes.

Read More