CO250

Extech CO250 Portable Indoor Air Quality CO2 Meter

Extech CO250 Portable Indoor Air Quality CO2 Meter

Description

The Extech Portable Indoor Air Quality CO2 Meter measures carbon dioxide, temperature, humidity, dew point, and wet bulb.

Features

  • User programmable audible alarm
  • Built-in RS-232 interface for capturing readings on PC
  • Maintenance free non-dispersive infrared CO2 sensor
Free Shipping on this product
Your Price
$399.99
Usually ships in 1-2 weeks

Shipping Information
Return Policy
Why Buy From Fondriest?

Details

The Extech Portable Indoor Air Quality CO2 Meter checks for carbon dioxide concentrations and calculates statistical 8 hour and 15 minute time weighted averages. The maintenance free NDIR sensor has measurement ranges from 0 to 5,000ppm for CO2, 14 to 140°F for temperature, and 0.0 to 99.9% for humidity.Programable audible alarms will alert users if readings detect a high concentration of CO2. 

 

The built-in RS-232 interface captures readings to transfer to a PC. The data acquisition software and included cable record and document CO2, humidity, and temperature data. Applications include checking air quality in schools, office buildings, greenhouses, hospitals, and anywhere that high carbon levels of carbon dioxide are generated.

Notable Specifications:
  • CO2 range: 0 to 5,000ppm
  • CO2 resolution: 1ppm
  • Temperature range: 14 to 140 °F (-10 to 60 °C)
  • Temperature resolution: 0.1 °F/°C
  • Humidity range: 0.0 to 99.9%
  • Humidity resolution: 0.1%
  • Wet bulb & dew point: calculated
  • Dimensions: 7.9 x 2.7 x 2.3 (200 x 70 x 57mm)
  • Weight: 6.7 oz. (190g)
What's Included:
  • (1) Meter
  • (1) Software and cable
  • (4) AA batteries
  • (1) Carrying case
Image Part # Product Description Price Stock Order
Extech CO250 Portable Indoor Air Quality CO2 Meter CO250 Portable indoor air quality CO2 meter
$399.99
Usually ships in 1-2 weeks

In The News

Flux towers track CO2 exchange between forests and atmosphere

Determining exchange rates of carbon dioxide between the earth’s forests and the atmosphere is turbulent business. Wind above forest canopies swirls as vortexes of air enter and exit stands of trees.  Across the globe, towers stand among the landscape, with sensors monitoring these eddies for carbon dioxide, water vapor and other gasses.  These so-called “flux towers” collect data on carbon dioxide exchange rates between the earth and atmosphere. Information gathered plays into the debate on the measurable effects of climate change. Carbon dioxide flows between the earth, atmosphere and ocean in an attempt to reach equilibrium. As automobiles and energy production facilities burn fossil fuels, more carbon dioxide joins to the mix.

Read More

Bacterium Breaks Down Ammonium in Sewage and Runoff Without Oxygen

Wetlands are one of nature's plans for treating water. Home to a host of different microbes, riparian wetland soils play matchmaker to nutrient-rich runoff and bacteria that feast on nutrients and other environmental toxins. Princeton University researchers have discovered one such bacterium—Acidimicrobiaceae bacterium A6—that can break down ammonium, part of both fertilizer and sewage runoff, without oxygen. This ability could mean wastewater treatment without expensive aeration machinery. Peter Jaffé , Princeton's William L. Knapp '47 Professor of Civil Engineering and a professor at Princeton's Andlinger Center for Energy and the Environment , corresponded with EM about the latest research . Dr. Jaffé and his team first published on A6 in 2015.

Read More

Monitoring and Tracking Ocean Microbes with LRAUVs

In March and April of 2018, researchers from the University of Hawai'i at Mānoa (UH Mānoa) and the Monterey Bay Aquarium Research Institute (MBARI) deployed a small fleet of long-range autonomous underwater vehicles (LRAUVs) in the waters of the Pacific near Hawaii. These LRAUVs automatically collect and archive samples of seawater, enabling scientists to study and track ocean microbes with a level of detail that is unprecedented. Chasing eddies The team who undertook the expedition on the research vessel Falkor was hoping to survey and track Mesoscale eddies within the North Pacific Subtropical Gyre (NPSG) using a suite of oceanographic instruments.

Read More