Lufft WS100 Radar Precipitation Sensor

The Lufft WS100 radar precipitation sensor accurately measures rain, snow, sleet, freezing rain, and hail using a 24 GHz Doppler radar.

Features

  • 24GHz Doppler radar measures precipitation drop speed and calculates quantity & type
  • Easily mounts to 2" diameter pipe with integrated bracket mount & U-bolts
  • SDI-12 output for integration with NexSens and other data loggers
Your Price $1,313.00
Usually ships in 1-2 weeks
Lufft
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft WS100 Radar Precipitation Sensor8367.U04 WS100 radar precipitation sensor, 10m cable
$1,313.00
Usually ships in 1-2 weeks
Lufft WS100 Radar Precipitation Sensor
8367.U04
WS100 radar precipitation sensor, 10m cable
Usually ships in 1-2 weeks
$1,313.00
ImagePart#Product DescriptionPriceStockOrder
Lufft WS-Series Sensor Interface Cables 8370.UKAB20 Sensor interface cable, 20m
$191.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB100 Sensor interface cable, 100m
$495.00
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
$317.00
Usually ships in 1-2 weeks
Sensor interface cable, 20m
Usually ships in 1-2 weeks
$191.00
Lufft WS-Series Sensor Interface Cables
8370.UKAB100
Sensor interface cable, 100m
Usually ships in 1-2 weeks
$495.00
Surge protector
Usually ships in 1-2 weeks
$317.00

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Precipitation

Tried and tested radar technology is used to measure precipitation. The precipitation sensor works with a 24GHz Doppler radar, which measures the drop speed and calculates precipitation quantity and type by correlating drop size and speed.

  • Precipitation
  • Principle: Radar
  • Measuring Range: 0.3mm to 5.0mm
  • Liquid Precipitation Resolution: 0.01 / 0.1 / 0.2 / 0.5 / 1.0 mm (pulse interface)
  • Precipitation Types: Rain, Snow, Sleet, Freezing Rain, Hail
  • Accuracy: +/-10%
  • Technical Data
  • Interface: SDI-12, Modbus
  • Operating Temperature: -40 to +60 C
  • Operating Humidity: 0 to 100% RH
  • Included Cable Length: 10m
  • (1) WS100 Radar Precipitation Sensor
  • (1) 10m sensor cable
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Lake Superior Algal Blooms Surprise, Highlight Need for More Monitoring

In 2012, for maybe the first time, Lake Superior got scummy. Visitors to the Apostle Islands National Lakeshore reported algae washing up on shore around the park.  It was a marked shift for the park, made up of a portion of the Lake Superior lakeshore and nearby islands. The water surrounding the park is cold, clear and typically low in nutrients: a combination unlikely to result in algal blooms. But, in 2012 and again in 2018 after violent storms, major algal blooms—ones observed over multiple days—washed ashore and clogged the beaches with unsightly, scummy algae. Not the usual suspects The algal blooms of Lake Superior are not the algal blooms of warmer, more nutrient-rich lakes like Lake Erie.

Read More

Unprecedented Changes are a New Challenge for Lake Tanganyika

*This is part two of a series on changing ancient lakes. See part one, Lake Baikal, here . Ancient lakes are facing a suite of rapid, unprecedented anthropogenic changes. While ancient lakes are spread around the world and vary widely from lake to lake, their incredible age, which can reach into the tens of millions of years, makes them unique resources to science. They host incredible biodiversity and long sediment records. They are vital sources of food and water for millions of people. In a changing world, ancient lakes’ value as scientific and natural resources and the incredibly diverse life they contain is under threat.

Read More

After Millions of Years, Ancient Lakes Face New Challenges

*This is part one of a two part story on ancient lakes. Part two , Lake Tanganyika, available here. Lakes that have supported human settlements for thousands of years are starting to feel humans’ effects in rapidly developing and significant ways. From climate change to nutrient loading to plastic pollution, ancient lakes are straining under some of the least welcome contributions of humanity. The changes could have consequences for the diversity of life within the lakes and the human populations that rely on it. And, while ancient lakes have been around long enough to weather past climatic changes, the changes occurring now are so rapid, the end result is uncertain.

Read More