Lufft WS100 Radar Precipitation Sensor

The Lufft WS100 radar precipitation sensor accurately measures rain, snow, sleet, freezing rain, and hail using a 24 GHz Doppler radar.

Features

  • 24GHz Doppler radar measures precipitation drop speed and calculates quantity & type
  • Easily mounts to 2" diameter pipe with integrated bracket mount & U-bolts
  • SDI-12 output for integration with NexSens and other data loggers
Your Price $1,313.00
Usually ships in 1-2 weeks
Lufft
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft WS100 Radar Precipitation Sensor8367.U04 WS100 radar precipitation sensor, 10m cable
$1,313.00
Usually ships in 1-2 weeks
Lufft WS100 Radar Precipitation Sensor
8367.U04
WS100 radar precipitation sensor, 10m cable
Usually ships in 1-2 weeks
$1,313.00
ImagePart#Product DescriptionPriceStockOrder
Lufft WS-Series Sensor Interface Cables 8370.UKAB20 Sensor interface cable, 20m
$191.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB100 Sensor interface cable, 100m
$495.00
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
$317.00
Usually ships in 1-2 weeks
Sensor interface cable, 20m
Usually ships in 1-2 weeks
$191.00
Lufft WS-Series Sensor Interface Cables
8370.UKAB100
Sensor interface cable, 100m
Usually ships in 1-2 weeks
$495.00
Surge protector
Usually ships in 1-2 weeks
$317.00

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Precipitation

Tried and tested radar technology is used to measure precipitation. The precipitation sensor works with a 24GHz Doppler radar, which measures the drop speed and calculates precipitation quantity and type by correlating drop size and speed.

  • Precipitation
  • Principle: Radar
  • Measuring Range: 0.3mm to 5.0mm
  • Liquid Precipitation Resolution: 0.01 / 0.1 / 0.2 / 0.5 / 1.0 mm (pulse interface)
  • Precipitation Types: Rain, Snow, Sleet, Freezing Rain, Hail
  • Accuracy: +/-10%
  • Technical Data
  • Interface: SDI-12, Modbus
  • Operating Temperature: -40 to +60 C
  • Operating Humidity: 0 to 100% RH
  • Included Cable Length: 10m
  • (1) WS100 Radar Precipitation Sensor
  • (1) 10m sensor cable
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Snowmelt, Stormwater and Contamination in Saskatoon

In Saskatoon, Saskatchewan, pollution and runoff from storms and snowmelt are getting the close look they deserve, and there’s much more to examine. Weather, from heavy spring storms to long months of snow and freezing temperatures, makes the polluting potential of runoff and snowmelt greater than and different from warmer climate cities, said Garry Codling in an email. In Saskatoon, potentially harmful elements in runoff can exceed the guidelines for runoff set by the Canadian government.

Read More

Appalachian streams show long, slow recovery from mining’s lingering effects

Appalachia may be as closely associated with mining as it is to anything else. That close relationship will leave its mark on the area’s streams long after the last mine closes. A nine-year study recently published in Science of the Total Environment shows that long after mining activity stops and the land is left to heal, streams and stream life are slow to recover. “We could be really fine point and say that some of them seem to be recovering very, very slowly,” said Carl Zipper, professor emeritus of environmental science at Virginia Tech University . Most of the streams studied didn’t show signs of recovery.

Read More

Dissecting the Algae Blooms of Montana’s “Unique Gem” the Smith River

An unusual nuisance is slowly growing into an inexplicable problem for researchers at Montana’s Department of Environmental Quality . For the last five years, a native species of algae called Cladophora has covered large portions of the Smith River, one of the state’s most popular waterways for boating, fishing and recreating. And scientists don’t know why. “It’s just unusual. I don’t know if it’s extreme for the state of Montana as other systems have had Cladophora problems as well. But it’s most unusual due to the lack of land use changes,” said Chace Bell, a water quality assessment specialist with the Montana DEQ.

Read More