Lufft WS100 Radar Precipitation Sensor

The Lufft WS100 radar precipitation sensor accurately measures rain, snow, sleet, freezing rain, and hail using a 24 GHz Doppler radar.

Features

  • 24GHz Doppler radar measures precipitation drop speed and calculates quantity & type
  • Easily mounts to 2" diameter pipe with integrated bracket mount & U-bolts
  • SDI-12 output for integration with NexSens and other data loggers
Your Price $1,313.00
Usually ships in 1-2 weeks
Lufft
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft WS100 Radar Precipitation Sensor8367.U04 WS100 radar precipitation sensor, 10m cable
$1,313.00
Usually ships in 1-2 weeks
Lufft WS100 Radar Precipitation Sensor
8367.U04
WS100 radar precipitation sensor, 10m cable
Usually ships in 1-2 weeks
$1,313.00
ImagePart#Product DescriptionPriceStockOrder
Lufft WS-Series Sensor Interface Cables 8370.UKAB20 Sensor interface cable, 20m
$191.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB100 Sensor interface cable, 100m
$495.00
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
$317.00
Usually ships in 1-2 weeks
Sensor interface cable, 20m
Usually ships in 1-2 weeks
$191.00
Lufft WS-Series Sensor Interface Cables
8370.UKAB100
Sensor interface cable, 100m
Usually ships in 1-2 weeks
$495.00
Surge protector
Usually ships in 1-2 weeks
$317.00

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Precipitation

Tried and tested radar technology is used to measure precipitation. The precipitation sensor works with a 24GHz Doppler radar, which measures the drop speed and calculates precipitation quantity and type by correlating drop size and speed.

  • Precipitation
  • Principle: Radar
  • Measuring Range: 0.3mm to 5.0mm
  • Liquid Precipitation Resolution: 0.01 / 0.1 / 0.2 / 0.5 / 1.0 mm (pulse interface)
  • Precipitation Types: Rain, Snow, Sleet, Freezing Rain, Hail
  • Accuracy: +/-10%
  • Technical Data
  • Interface: SDI-12, Modbus
  • Operating Temperature: -40 to +60 C
  • Operating Humidity: 0 to 100% RH
  • Included Cable Length: 10m
  • (1) WS100 Radar Precipitation Sensor
  • (1) 10m sensor cable
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Charles River Algal Blooms Stop Swimming and Launch a Floating Wetland

The Charles River used to be a swimming hotspot for Cambridge and Boston residents. Decades of industrial pollution and nutrient runoff have degraded water quality and eliminated public swimming in the Lower Charles, but a movement is afoot to get Boston and Cambridge back in the water. One step toward the goal of a safely swimmable river—without the need to obtain a permit, as is now necessary—is detecting and managing the harmful algal blooms that appear on the river. An experimental floating wetland and new research and analysis of water quality data that shows a possible effective detection system for algal blooms on the Charles River are two new steps toward the goal of safe, accessible swimming.

Read More

Harnessing the Gulf Stream for Renewable Energy

The Gulf Stream, the massive western boundary current off the east coast of North America, moves water from the Gulf of Mexico north and west across the Atlantic Ocean. There’s a lot of energy in that much moving water and researchers are trying to put it to use. Although the Gulf Stream’s path shifts (researchers say it acts like a wiggling garden hose), in a couple of spots, it stays relatively stable. At one such spot off the coast of Cape Hatteras, North Carolina, researchers have dropped moorings and research instruments to study the current with the eventual goal of harnessing it for renewable energy.

Read More

Buoys in the time of Covid: Delays to important information

In early 2020, Michigan found itself facing one of the worst outbreaks of Covid-19 in the country. Though it’s close to second nature now, businesses, schools and governments were suddenly forced to conduct business without close contact. Universities and research institutions had to pause some scientific research. Whatever was able to continue slowed to a crawl. Around the Great Lakes, a network of buoys monitors dozens of water quality parameters and lake conditions, reporting them in real time. This year, the monitoring season was cut a bit short as Covid-19 restrictions hit in the weeks before buoys were set to be deployed.

Read More