Lufft WS304 Multi-Parameter Weather Sensor

The Lufft WS304 Multi-Parameter Weather Sensor simultaneously measures air temperature, humidity, pressure & solar radiation with a tiltable pyranometer.

Features

  • Integrated tiltable pyranometer for solar radiation measurements
  • Easily mounts to 2" diameter pipe with integrated bracket mount & U-bolts
  • SDI-12 output for integration with NexSens and other data loggers
Your Price $2,139.00
Usually ships in 1-2 weeks
Lufft
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft WS304 Multi-Parameter Weather Sensor8374.U12 WS304 multi-parameter weather sensor, air temperature, humidity, pressure & tiltable solar radiation, 10m cable
$2,139.00
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
Lufft WT1 Surface Temperature Sensor 8160.WT1 WT1 surface temperature sensor, 10m cable
$336.00
Usually ships in 1-2 weeks
Lufft WTB100 Tipping Bucket Rain Gauge 8353.10 WTB100 tipping bucket rain gauge, 0.2mm per tip, 10m cable
$550.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB20 Sensor interface cable, 20m
$191.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB100 Sensor interface cable, 100m
$495.00
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
$317.00
Usually ships in 1-2 weeks

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Air Temperature & Humidity
Temperature is measured using a highly accurate NTC-resistor, while humidity is measured using a capacitive humidity sensor. Both sensors are located in a ventilated radiation shield to reduce the effects of solar radiation.

Pressure
Absolute air pressure is measured using a built-in MEMS sensor. The relative air pressure referenced to sea level is calculated using the barometric formula with the aid of the local altitude, which is user-configurable on the equipment.

Solar Radiation
The tiltable pyranometer is intended for shortwave global solar radiation measurements in the spectral range from 300 to 1100nm. The thermopile sensor construction measures the solar energy that is received from the total solar spectrum and the whole hemisphere. The output is expressed in Watts per square meter.

  • Air Temperature
  • Principle: NTC
  • Measuring Range: -50 to +60 C
  • Resolution: 0.1 C (-20 to +50 C); otherwise 0.2 C
  • Accuracy: +/-0.2 C (-20 to +50 C); otherwise +/-0.5 C
  • Units: C; F
  • Humidity
  • Principle: Capacitive
  • Measuring Range: 0 to 100% RH
  • Resolution: 0.1% RH
  • Accuracy: +/-2% RH
  • Units: % RH; g/m3; g/kg
  • Pressure
  • Principle: Capacitive
  • Measuring Range: 300 to 1200hPa
  • Resolution: 0.1hPa
  • Accuracy: +/-1.5hPa
  • Unit: hPa
  • Radiation
  • Response Time (95%): <1s
  • Spectral Range: 300 to 1100 nm
  • Measuring Range: 1400 W/m2
  • Technical Data
  • Interface: SDI-12, Modbus
  • Operating Temperature: -50 to +60 C
  • Operating Humidity: 0 to 100% RH
  • Included Cable Length: 10m
  • (1) WS304 Multi-Parameter Weather Sensor
  • (1) 10m sensor cable
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Birds, Fish and Shifting Sediment; How Lake Erie Buoys Measure It All

Since its population bottomed out, the federally-endangered Piping Plover in the Great Lakes has made a comeback for the ages.  A population that once measured approximately 17 pairs and rebounded, hitting 76 pairs in 2017. The same year that count was made, the plovers had also returned to Gull Point, a nesting location that hadn’t been used in more than 60 years.   In an effort to understand some of the conditions that have allowed this species to return to its habitat, researchers have directed their attention toward a curious instrument for help. A buoy that floats off the coast of Presque Isle State Park , near where Gull Point is located.

Read More

Much remains unknown about sharks. The Cal State Shark Lab wants to change that

Thirty years ago, white shark sightings near California’s beaches almost never happened. For Chris Lowe, who was a graduate student at California State University’s Shark Lab at the time, spying a dorsal fin from one of the ocean’s top predators was very rare. Prior to the mid-90’s, an expansive commercial fishing operation and the loss of marine animals decimated white shark populations. If their food wasn’t being hunted, sharks were getting caught in gill nets. At that point, they would be killed anyways before getting brought to the market to be sold. Then in 1994, California residents approved propositions that banned gillnets in state waters and enacted protections for the white shark.

Read More

REASON Project Puts Water Quality Instrumentation in Dams

Where and how to monitor water quality is always a challenge, particularly in complex aquatic ecosystems. The new REASON Project from a team at Clarkson University is working to demonstrate the utility of using water quality instrumentation in dams on major rivers in the Great Lakes system. Clarkson University Professor of Biology Michael Twiss spoke with EM about the new approach their team is taking at the Moses-Saunders Power Dam across the St. Lawrence River and the benefits the development of smart infrastructure such as this might offer. “The upper St. Lawrence River is defined as that which leaves Lake Ontario and is just upstream from the city of Montreal,” explains Dr. Twiss.

Read More