Lufft WS510 Multi-Parameter Weather Sensor

The Lufft WS510 Multi-Parameter Weather Sensor integrates the Kipp & Zonen CMP10 pyranometer along with sensors for air temperature, humidity, pressure & wind.

Features

  • Integrated Kipp & Zonen CMP10 pyranometer for solar radiation measurements
  • Easily mounts to 2" diameter pipe with integrated bracket mount & U-bolts
  • SDI-12 output for integration with NexSens and other data loggers
Your Price $5,414.00
Usually ships in 1-2 weeks
Lufft
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Lufft WS510 Multi-Parameter Weather Sensor8375.U13 WS510 multi-parameter weather sensor, air temperature, humidity, pressure, solar radiation & wind, 10m cable
$5,414.00
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
Lufft WT1 Surface Temperature Sensor 8160.WT1 WT1 surface temperature sensor, 10m cable
$336.00
Usually ships in 1-2 weeks
Lufft WTB100 Tipping Bucket Rain Gauge 8353.10 WTB100 tipping bucket rain gauge, 0.2mm per tip, 10m cable
$550.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB20 Sensor interface cable, 20m
$191.00
Usually ships in 1-2 weeks
Lufft WS-Series Sensor Interface Cables 8370.UKAB100 Sensor interface cable, 100m
$495.00
Usually ships in 1-2 weeks
Lufft Surge Protector 8379.USP Surge protector
$317.00
Usually ships in 1-2 weeks

Overview
The Lufft family of multi-parameter weather sensors offer a cost-effective, compact alternative for the acquisition of a variety of measurement parameters on land- and buoy-based weather stations. Depending on the model, each sensor will measure a different combination of weather parameters to meet a wide variety of applications.

Air Temperature & Humidity
Temperature is measured using a highly accurate NTC-resistor, while humidity is measured using a capacitive humidity sensor. Both sensors are located in a ventilated radiation shield to reduce the effects of solar radiation.

Pressure
Absolute air pressure is measured using a built-in MEMS sensor. The relative air pressure referenced to sea level is calculated using the barometric formula with the aid of the local altitude, which is user-configurable on the equipment.

Wind Speed & Direction
The wind sensor uses four ultrasound sensors which take cyclical measurements in all directions. The resulting wind speed and direction are calculated from the measured run-time sound differential.

Compass
The integrated electronic compass can be used to check the north-south adjustment of the sensor housing for wind direction measurement. It is also used to calculate the compass-corrected wind direction.

Solar Radiation
The pyranometer is based on the Kipp & Zonen CMP10 that uses the ISO 9060 Secondary Standard for measurements in the spectral range from 285 to 2800nm. The output is expressed in Watts per square meter.

  • Air Temperature
  • Principle: NTC
  • Measuring Range: -50 to +60 C
  • Resolution: 0.1 C (-20 to +50 C); otherwise 0.2 C
  • Accuracy: +/-0.2 C (-20 to +50 C); otherwise +/-0.5 C
  • Units: C; F
  • Humidity
  • Principle: Capacitive
  • Measuring Range: 0 to 100% RH
  • Resolution: 0.1% RH
  • Accuracy: +/-2% RH
  • Units: % RH; g/m3; g/kg
  • Pressure
  • Principle: Capacitive
  • Measuring Range: 300 to 1200hPa
  • Resolution: 0.1hPa
  • Accuracy: +/-1.5hPa
  • Unit: hPa
  • Radiation
  • Response Time (95%): <5s
  • Directional Error (at 80° with 1,000 W/m2): <10 W/m2
  • Temperature Dependence of Sensitivity: <1% (–10 to +40° C)
  • Spectral Range (50% points): 285 to 2,800 nm
  • Measuring Range: 4000 W/m2
  • Wind Speed
  • Principle: Ultrasonic
  • Measuring Range: 0 to 60m/s
  • Resolution: 0.1m/s
  • Accuracy: +/-0.3m/s or 3% (0 to 35m/s); +/-5% (>35m/s)
  • Response Threshold: 0.3m/s
  • Units: m/s; km/h; mph; kts
  • Wind Direction
  • Principle: Ultrasonic
  • Measuring Range: 0 to 359.9 degrees
  • Resolution: 0.1 degrees
  • Accuracy: +/-3 degrees
  • Response Threshold: 0.3m/s
  • Compass
  • Principle: Integrated Electronic Compass
  • Measuring Range: 0 to 359.9 degrees
  • Resolution: 1.0 degree
  • Technical Data
  • Interface: SDI-12, Modbus
  • Operating Temperature: -50 to +60 C
  • Operating Humidity: 0 to 100% RH
  • Included Cable Length: 10m
  • (1) WS510 Multi-Parameter Weather Sensor
  • (1) 10m sensor cable
  • (1) Operations manual
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Robotic Fish May Reduce Live Fish Testing Near Hydroelectric Plants

Each year in Germany, as many as 450,000 living fish undergo live animal experiments to test how fish-friendly hydroelectric power plants in the country are. The idea is to discover how readily the fish can move through hydroelectric turbine installations in order to ultimately reduce mortality rates. Of course, subjecting live fish to a potentially deadly test to save others is a bitter irony. And it's one that a team of scientists from the RETERO research project hopes to eventually mitigate with a robotic fish for testing. EM corresponded with Olivier Cleynen and Stefan Hoerner from the University of Magdeburg about the complex flow conditions that set the parameters for the project.

Read More

Mobile HAB Lab, Citizen Scientists Building Awareness

News stories about dogs getting sick from harmful algal blooms (HABs) in lakes have caused worry among members of the public this summer more than once. But Regional Science Consortium (RSC) Executive Director Dr. Jeanette Schnars and a dedicated team are bringing awareness about HABs to the public with the Mobile HAB Lab. “We just launched the HAB Citizen Scientists program this year,” explains Dr. Schnars. “It helps us work with people, especially people who spend time at marinas frequently, that are out there all season long.” The season for boaters at Presque Isle, where RSC is located, starts in mid-May and usually continues through the beginning or middle of October.

Read More

Handheld Cyanotoxin Detection Technology Prototype

In the battle against harmful algal blooms (HABs), time is important . The need for laboratory equipment and testing is a serious challenge for water managers. This issue caught the eye of Qingshan Wei , an assistant professor of chemical and biomolecular engineering at North Carolina State University . “Our research group is interested in developing low-cost sensors,” Wei told EM . “Recently we have been developing sensors for environmental monitoring, and cyanotoxins came to our attention .” Cyanobacteria, which generate HABs, are becoming a challenge across the US . They are a very serious problem in North Carolina, in part due to the weather.

Read More