NexSens PT-500 Vented Water Level Sensor

The PT-500 is a rugged vented water level sensor designed for highly accurate water level measurement in streams, lakes, rivers, and other water bodies.

Features

  • +/- 0.1% full scale accuracy with automatic temperature compensation
  • Integrated lightning and surge protection
  • UW connector installed for use with NexSens G2/X2 data loggers
Your Price $983.00
Usually ships in 3-5 days
NexSens
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
NexSens PT-500 Vented Water Level SensorPT-500-UW-6-35 PT-500 vented water level sensor with UW plug connector, 6 PSIG range, 35 ft. cable
$983.00
Usually ships in 3-5 days

The PT-500 vented water level sensor is designed for use in a wide variety of environmental monitoring applications. The sensor is ideally suited for measuring water level in weirs, flumes, small to large streams, ponds, lakes, irrigation channels, and groundwater wells. The sensor is installed in a fixed location below the minimum expected water level, and a cable containing the sensor signals and vent tube is connected to a data logger mounted above flood stage.

The PT-500 measures the combined pressure exerted on it by the atmosphere and the head of water above it. A vent tube in the cable automatically corrects for changes in barometric pressure, and measured values are mathematically compensated for all linearity and temperature errors. With +/-0.1% Full Scale accuracy, the PT-500 provides high performance and accuracy over a wide range of operating conditions. The housing is constructed with laser welded 316L stainless steel.

The PT-500-UW features a plug-and-play interface to NexSens X2/G2 data loggers via the installed UW connector. The thread-in connector screws into the logger to reduce setup complexity and reduce the chance for errors. The specially designed UW connector features a field wireable design that provides the ability to cut and re-wire the cable to a specific length on-site. The cable is vented in the UW connector using a Gortex vent located on the side of the body.

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Solar and Wind-Powered, Algae Tracking Boat Trialed in Florida

Time is of the essence when it comes to tracking algal blooms, and people everywhere are looking for solutions. In Florida, scientists from Florida Atlantic University Harbor Branch Oceanographic Institute (HBOI) recently trialed a solar-powered, algae-tracking sail boat developed by Navocean , Inc. Dr. Jordon Beckler of Florida Atlantic University (FAU) directs HBOI's Geochemistry and Geochemical Sensing Lab and spoke to EM about the trials and the boat. "This boat is so amazing when you see it in action," remarks Dr. Beckler. "Navocean originally contacted me a few years back about a demonstration when I was over at my previous institution in West Florida, and we brainstormed some scenarios for employing the boat for harmful algae bloom monitoring.

Read More

CICHAZ Biological Field Station Provides A Unique Educational and Research Experience in Mexico’s Huasteca Region

The story of the Centro de Investigaciones Científicas de las Huastecas "Aguazarca" (CICHAZ) Biological Field Station, a member of the Organization of Biological Field Stations ( OBFS ), starts with Dr. Gil Rosenthal, Professor of Biology and Chair of Ecology and Evolutionary Biology at Texas A & M University . Rosenthal has worked in the Huasteca region of Mexico since 1994 and for years kept his research equipment at a local ranch/hotel with the dream of one day having a field station where he could run experiments with collaborators and students. Since 2005, Rosenthal has been the Co-Director of the field station along with his wife, Dr.

Read More

Eyes Underwater Watching Aquatic Wildlife

For as long as scientists have been studying the ocean, they have been limited by a lack of power. However, recent work from researchers at the University of Washington (UW) offers a promising new way to harvest energy from waves at sea. UW associate professor of mechanical engineering Brian Polagye spoke to EM about a recent project that used wave energy to power one of UW’s Adaptable Monitoring Packages, or AMPs. “Our work in this area has really been ongoing since about 2012,” explains Dr. Polagye. “We put our first prototype AMP in the water back in 2015. Since then, it’s been going through successive evolutions, variations on the package.

Read More