NexSens X2-CBMC Buoy-Mounted Data Logger

The X2-CBMC is an offshore-ready wireless data logger housed inside a waterproof enclosure with wet-mate connectors for integration with NexSens' CB-Series data buoys.

Features

  • MCIL/MCBH wet-mateable sensor and power ports
  • Cellular or Iridium satellite telemetry options
  • Optional WQData LIVE web datacenter for instant access on any web browser
Your Price Call
Stock Check Availability  
NexSens X2-CBMC Buoy-Mounted Data Logger

The NexSens X2-CBMC is an all-in-one environmental data logger specifically designed for offshore use with a NexSens CB-Series data buoy. It automatically recognizes sensors and sends data to the web via cellular or Iridium satellite telemetry. The X2-CBMC includes five sensor ports that are compatible with most environmental sensor protocols including SDI-12, RS-232 and RS-485. All connections are made using MCIL/MCBH wet-mate connectors, and the built-in sensor library automatically facilitates setup and configuration. Sensor data is recorded on common or independent schedules.

The X2-CBMC is powered from the CB-Series buoy’s solar rechargeable battery reserve. Advanced power management combined with ultra-low sleep and run currents extend battery life and reduce the need for larger buoy and solar charging systems. The X2-CBMC monitors itself while collecting environmental data. Internal temperature, humidity, voltages and currents are constantly recorded. Failure alerts can be sent automatically to a predefined list of contacts.

The X2-CBMC integrates the sensor ports, solar panel connector, pressure relief valve, and wireless antenna all on the data well lid for quick installation on CB-Series data buoys. Integrated cellular or Iridium satellite telemetry modules offer real-time remote communications via the WQData LIVE web datacenter. There, data is presented on a fully-featured and easy-to-use dashboard. Other features include automated reports, alarms, push notifications and much more.

Mount: CB-Series buoy data well plate
Material: 316 stainless steel plate with PVC body
Weight: 10.5 lbs.
Dimensions: 13.5" Diameter, 4.4" Height (6" with cell antenna; 8.125" with Iridium antenna)
Power Requirements
: 5-16 VDC +/-5% (Reverse polarity protected)
Current Draw (Typical @ 12VDC): Low power sleep: 350uA; Active: 45mA; Cellular transmitting: 300mA; Iridium satellite transmitting: 170mA
Peak Current: Power supply must be able to sustain a 500mA 1-second peak current (@ 12V)
Operating Temperature: -20C to 70°C
Rating: IP67
User Interface: RS-485 direct to CONNECT Software, WQData LIVE Web Datacenter, buzzer indicator
Data Logging: 256MB microSD card (expandable up to 4GB)
Data Processing: Parameter level polynomial equation adjustment; Basic & Burst Averaging (min, max, standard deviation, and raw data available)
Real Time Clock (RTC): <30sec/month drift1; Auto-sync weekly2; Internal backup battery
Log Interval: User configurable from 1 minute (10 minute default)3; Independent interval per sensor
Transmission Trigger: Time-based; Selective parameter upload option
Sensor Interfaces: SDI-12, RS-232 (3 Channels), RS485
Sensor Power: (3) independent switches from input supply4,5
Built-in Sensors: Temperature (-40C to 85C, 0.1C resolution, ±0.3C accuracy); Humidity (0% to 100%, 0.1% resolution, ±4% accuracy from 5 to 95% RH & -20 to 70C); Battery voltage; System & sensor current
Sensor Ports: (5) MCBH-8-MP for Sensor Interface (RS-232, RS-485, SDI-12, Switched Power, GND)6
Power Port: (1) MCBH-6-FS for Power and Communication (12V Solar In, Power Switch, RS-485 Host, GND)
Telemetry Options: 4G LTE cellular, CAT-M1 cellular, Iridium satellite
Antenna Port: Type N female

Notes
1Assumes 25ºC operating temperature
2Requires the X2 to be connected to the internet
3Minimum log interval dependent on sensor limitations and processing time
4Cumulative concurrent current limit of all three channels is 2A
5Logger power supply must be able to support current requirements of sensors
6P0A & P0B share a single RS-232 and power channel. P1A & P1B share a single RS-232 and power channel.

  • (1) X2-CBMC buoy-mounted data logger
  • (5) Sensor port dummy plugs
  • (1) Power port dummy plug
  • (1) Quick start guide
  • (1) Wireless antenna (installed on telemetry units only)
Questions & Answers
What is the difference between the X2-CBMC and the X2-CB?
The X2-CBMC data logger is designed for offshore marine applications and difficult freshwater environments, while the X2-CB data logger is meant for lakes and other inland bodies of water. The X2-CBMC uses MCBH/MCIL wet-mate sensor/power connectors and a pressure relief valve for battery outgassing compared with UW plug/receptacle connectors and a passive battery vent on the X2-CB.
Can I have different measurement intervals for the sensors?
The X2-CBMC (and all X2 data loggers) allows each sensor to have its own measurement interval if desired. Alternatively all sensors can measure at the same interval.
How can I connect my existing sensor to an X2-CBMC data logger?
Customers can send in sensor cables to be terminated with an 8-pin female wet mate connector (PN# MCIL-8-FS-X). Alternatively, NexSens can provide pigtail cables terminating in bare wires for the customer to splice with their existing cables (PN# MCIL-8-FS-1).
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
NexSens X2-CBMC Buoy-Mounted Data Logger
X2-CBMC
X2-CBMC buoy-mounted data logger with MCBH connectors
Request Quote
Check Availability  
NexSens X2-CBMC Buoy-Mounted Data Logger
X2-CBMC-C-WW4G
X2-CBMC buoy-mounted data logger with MCBH connectors & global 4G LTE cellular telemetry
Request Quote
Check Availability  
NexSens X2-CBMC Buoy-Mounted Data Logger
X2-CBMC-C-CATM
X2-CBMC buoy-mounted data logger with MCBH connectors & CAT-M1/NB2 LTE cellular telemetry
Request Quote
Check Availability  
NexSens X2-CBMC Buoy-Mounted Data Logger
X2-CBMC-I
X2-CBMC buoy-mounted data logger with MCBH connectors & Iridium satellite telemetry
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Crystal Clear Problems: Impacts of Water Transparency in Aquatic Ecosystems

From crystal clear alpine lakes to muddy rivers and boggy swamps, water transparency is an easily observable water quality parameter to anyone who takes a few moments to peer into the (sometimes) murky depths. Water transparency varies dramatically based on the location of bodies of water among different watershed environments, but it can also change quickly due to a variety of internal and external factors. At Miami University (OH), the Global Change Limnology Lab explores the many ways that water transparency impacts aquatic ecosystems. Operational for nearly 20 years, the lab trains undergraduate and graduate students and has conducted work from the midwest Great Lakes to Alaska, South America and New Zealand.  The Global Change Limnology Lab, headed by Dr.

Read More

Onset HOBO RX3000 Remote Soil Monitoring Station

The Onset HOBO RX3000 Remote Monitoring Station is an environmental monitoring system that continuously logs data from compatible sensors that measure soil moisture, water level, temperature and various weather parameters. With numerous options for remote monitoring systems, Onset provides a Build-a-system configurator to help with ordering a system fit for any project’s needs. The configurator easily guides the user through the process of selecting different types of communication, power, sensor and other site-specific requirement selections when building their ideal system.  The RX3000 ships with mounting plates and hardware, rubber cable channels, rubber plugs, grease, grounding wire and U-bolts.

Read More

Lake Malawi: A Treasure to Protect

Lake Malawi (also known as Lake Nyasa and Lake Niassa) doubles as a Rift Valley Lake and one of the seven African Great Lakes. Due to its unique biodiversity, it’s a great place to conduct limnological studies. Harvey Bootsma is a professor for the School of Freshwater Sciences at the University of Wisconsin-Milwaukee and has had an interest in limnology ever since he was a kid. Bootsma fondly recalls summer vacations to Georgian Bay, Ontario, “I probably spent as much time in the water as I did out of it.” He continues, "I remember telling myself, ‘I’m going to get a job where I can stay here all the time.’” While Harvey didn’t end up working on Georgian Bay, he was offered a job working on Lake Malawi. He continued working there while completing his Ph.D.

Read More