NexSens X2-SDL Submersible Data Loggers

The X2-SDL Submersible Data Logger is a rugged, self-powered data logging system with optional cellular or Iridium satellite communications.


  • Three sensor ports for connection to industry-standard digital sensor interfaces
  • Powered by (16) D-cell alkaline batteries or optional solar power pack
  • Withstands extreme wave action, floods, and periodic & long-term deployment underwater
Your Price Call
Stock Check Availability  
NexSens X2-SDL Submersible Data Loggers

The X2-SDL Submersible Data Logger is a rugged, self-powered remote data logging system for deploying environmental sensors in lakes, streams, rivers, wetlands, coastal waters, sewers, and culverts without fear of accidental flooding. The system is configured with three sensor ports for connection to industry-standard digital interfaces including RS-485, RS-232 and SDI-12. Additional sensor inputs are available through the use of adapters. Each sensor port offers a UW receptacle with double O-ring seal for a reliable waterproof connection. Unlike many data loggers, the X2-SDL is truly submersible. The housing and battery compartment are completely sealed and waterproof.

When it comes to field ruggedness, the NexSens X2-SDL is in a class of its own. The housing is constructed of impact-resistant PVC and includes two elastomer bumpers for long-term deployment in close-fitting pipes and buoy ports. Internal circuit boards and communication modules are shock mounted and all access ports incorporate redundant sealing. The X2-SDL withstands extreme wave action, drops, floods, periodic & long-term deployment underwater, and more. When fitted for wireless remote communication, the cellular and Iridium satellite antennas are also waterproof.

The X2-SDL can be powered autonomously by sixteen D-cell alkaline batteries. Optional solar power kits provide long-term continuous operation and solar charging. Common sensor connections include multi-parameter sondes, water quality sensors, temperature strings, ADCP's, water level sensors, and weather stations. Optional integrated cellular or satellite telemetry modules offer real-time remote communications via the WQData LIVE web datacenter. There, data is presented on a fully-featured and easy-to-use dashboard. Other features include automated reports, alarms, push notifications and much more.

Material: PVC body with Acetal battery lid
Weight: 12.0 lbs. without batteries; 16.6 lbs. with batteries
Dimensions: 5.5” (13.97 cm) diameter; 17.3” (43.94 cm) length (antenna length varies by model)
Internal Power
: 16 user-replaceable D-cell alkaline batteries
External Power Requirements
: 5-16 VDC +/-5% (Reverse polarity protected)
Current Draw (Typical @ 12VDC): Low power sleep: 350uA; Active: 45mA; Cellular Transmitting: 300mA; Iridium satellite transmitting: 170mA
Peak Current: Power supply must be able to sustain a 500mA 1-second peak current (@ 12V)
Operating Temperature: -20C to 70°C
Rating: Submersible to 200 ft. (requires SDL-CAP on telemetry models)
User Interface: RS-485 direct to CONNECT Software, WQDatalive Web Datacenter
Data Logging: 256MB microSD card (expandable up to 4GB)
Data Processing: Parameter level polynomial equation adjustment; Basic & Burst Averaging (min, max, standard deviation, and raw data available)
Real Time Clock (RTC): <30sec/month drift1; Auto-sync weekly2; Internal backup battery
Log Interval: User configurable from 1 minute (10 minute default)3; Unique interval per sensor
Transmission Trigger: Time-based, Selective parameter upload option
Sensor Interfaces: SDI-12, RS-232 (3 Channels), RS485
Sensor Power: (3) independent switches from input supply4,5
Built-in Sensors: Temperature (-40C to 85C, 0.1C resolution, ±0.3C accuracy); Humidity (0% to 100%, 0.1% resolution, ±4% accuracy from 5 to 95% RH & -20 to 70C); Battery voltage; System & sensor current
Sensor Ports: (3) 8-Pin for Sensor Interface (RS-232, RS-485, SDI-12, Switched Power, GND)
Power Port: (1) 6-Pin for Power and Communication (Primary/Backup Input, RS-485 Host, GND)
Telemetry Options: 4G LTE cellular, CAT-M1 cellular, Iridium satellite
Antenna Port: Type N female

1Assumes 25ºC operating temperature
2Requires the X2 to be connected to the internet
3Minimum log interval dependent on sensor limitations and processing time
4Cumulative concurrent current limit of all three channels is 2A
5Logger power supply must be able to support current requirements of sensors

Questions & Answers
How long is the battery life for this logger?
The battery life is dependent on what sensors are connected, the measurement interval, and the transmit interval (if applicable). Contact us for a custom power budget tailored to your specific application.
Can more than 3 sensors connect to this logger?
Yes, UW-2W and UW-4W splitters can accommodate more sensors:
Can the X2-SDL data logger be deployed as-is, or does it need to be secured in place?
The X2-SDL data logger is available as a standalone package that can be fully submerged for extended periods of time. Mounts are available for underwater structures and instrument cages. For applications requiring wireless telemetry, the logger is typically secured above water on a fixed structure (stream bank, piling, etc.) or housed inside a CB-50 data buoy.
Are any sensors included with the X2-SDL?
The X2-SDL data logger integrates a temperature and humidity sensor for internal monitoring and diagnostics. It also measures and logs alkaline battery voltage so users can plan for maintenance trips to swap batteries. The logger has three native sensor ports available for external 12 VDC digital sensors including water quality, water level, weather, soil, etc. Two-way and four-way sensor splitters are available to increase the number of sensors that the logger can simultaneously support.
What auxiliary power options are available for the X2-SDL submersible data logger?
The X2-SDL data logger includes a 6-pin auxiliary power port compatible with the SBP500 submersible battery packs, SP-Series solar power packs, or any user-supplied 5-24 VDC power source.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Part #
NexSens X2-SDL Submersible Data Loggers
X2-SDL submersible data logger
Request Quote
Check Availability  
NexSens X2-SDL Submersible Data Loggers
X2-SDL submersible data logger with global 4G LTE cellular telemetry
Request Quote
Check Availability  
NexSens X2-SDL Submersible Data Loggers
X2-SDL submersible data logger with CAT-M1/NB2 LTE cellular telemetry
Request Quote
Check Availability  
NexSens X2-SDL Submersible Data Loggers
X2-SDL submersible data logger with Iridium satellite telemetry
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Digital Mayfly Data Logger Sensor Stations Monitoring Watersheds

For most humans, mayflies seem like a nuisance, hovering over the waterways as we try to enjoy them. However, for anyone hoping to monitor the health of watersheds, mayflies are important aquatic species—and now, a digital version of the mayfly is helping some scientists keep an eye on the water. Research scientist Dr. Scott Ensign , who serves as Assistant Director of the Stroud Water Research Center , spoke to EM about how the digital mayfly technology developed. “ Shannon Hicks is the engineer who started developing the Mayfly six or seven years ago,” explains Dr. Ensign.

Read More

Thin Ice: Year-Long Monitoring in Missouri Reservoirs

The value of multi-lake studies is well understood by international organizations like the Global Lake Ecological Observatory Network (GLEON) and the scientists who work tirelessly to provide data to the larger network. Rebecca North, an associate professor at the University of Missouri-Columbia , is one of many researchers involved in multi-lake research initiatives and conducting research locally in her home state. Having been born and raised on the shore of Lake Ontario, North grew up in a community that revolved around water. She also saw firsthand one of the worst water quality bodies of the world, the Bay of Quinte, decline throughout her lifetime.

Read More

Duality of Science: The Importance of Science Communication for Promoting Change

It is no secret that in today's world, most scientists do not stick exclusively to science–they must be educators, communicators, and advocates. The looming threats facing the planet's climate and the growing distrust in science by the public have forced scientists to expand and improve their capacity for science communication to the world.  From repeatedly testifying before the U.S. Congress to winning an Emmy as the Chief Scientific Advisor for an award-winning nature documentary, marine ecologist James W. Porter has been thrust into the public eye.

Read More