Saharan Dust in Houston
Air Quality Scientists Find It by Accident

Land Evolution Observatory
Biosphere 2 Turns Back the Planetary Clock

Smelt and the Delta
Endangered Fish's Food Web
Welcome to the spring edition of the Environmental Monitor. At an expanded 58 pages, it’s our biggest issue yet. We’ve filled that extra space with new features that bring you the most relevant and fascinating science, research and technology news possible. Turn to “In The News” for bite-sized updates from scientists across the globe. The “Web Exclusives” section has a quick look at just a few of the additional articles available only in the online edition. “In the Great Lakes” is a summary of research around the basin.

Meanwhile, we have more of the in-depth features our readers have come to expect. That includes a trip up the Rockies to Storm Peak, an atmospheric laboratory that spends 35 percent of the winter inside the clouds. We’ve also got the story on the OceanCube, an in-situ ocean observatory off the coast of Japan. From the cover story, we’ll talk to a U.S. Geological Survey hydrologist that uses sensors to capture a high-definition picture of carbon transport in Rocky Mountain National Park.

Located in Fairborn, Ohio, Fondriest Environmental is the trusted partner you can turn to for help with environmental monitoring projects. We can assist in everything from planning and monitoring to systems integration, equipment calibration and even staff training. Our applications engineers assemble, integrate, and calibrate all equipment — when you get it, it’s ready to use. Our specialists have years of experience developing and deploying remote systems and working with leading suppliers such as YSI, Hach, Thermo Scientific, In-Situ, Solinst, NexSens, and many more.

Fondriest Environmental, Inc.
2091 Exchange Court
Fairborn, OH 45324
tel: 888.426.2151
debb@fondriest.com

On the cover: National Park Service

CONTENTS
ENVIRONMENTAL MONITOR | SPRING 2014

03 Web Exclusives
04 In the News
06 Featured Photo
08 Environmental Education
10 Great Salt Lake
12 Wait of Wind
15 Product Innovation: Digital FieldBook
16 Open-Source ROV
18 Biosphere 2
20 Saharan Dust
22 King County
24 Fiber-Optic Temperature Sensing
26 Folsom Dam Spillway
28 Storm Peak Laboratory
30 Harmful Algal Blooms Infographic
32 OceanCube Observatory
34 High-Def Carbon
36 Environmental Dashboard
38 Sacramento River Delta
40 Monitoring Gear
42 Colorado’s Incidental Wetlands
44 Chicago River Microbes
46 Environmental Measurements
48 Great Lakes Research Roundup
51 New Mexico Groundwater
52 Industry Profile: Jeannette Schnars
53 New Thermistor Strings
54 New Technology
56 Crossword Puzzle

IN THE NEXT EDITION
The Susquehanna River Basin Commission’s remote water quality monitoring network tracks temperature, conductivity and more in dozens of headwater streams flowing amid Marcellus Shale drilling.
Sensor data give early warnings of ecosystem tipping points

Big shifts in ecosystems — say, from a food web made up of native species to one dominated by invasives — can happen quickly and with relatively little warning. But a new study shows that intensive data provided by environmental sensors could help give managers a heads up for impending tipping points.

“The research is in a fairly early stage,” said Ryan Batt, a graduate student at the University of Wisconsin-Madison’s Center for Limnology and lead author of the study. “But I think in the long term we’d hope that it could contribute to being able to better anticipate these big changes and take action accordingly while the cost-to-benefit ratio for mitigating environmental impacts is still really low.”

The method for predicting the approach of ecological thresholds has mostly been a focus of theoretical and laboratory research. This study, published recently in the Proceedings of the National Academy of Sciences, is an important step towards applying the tools in real ecosystems.

A few Sierra Nevada firs give clues to fate of species

Somewhere in California’s Sierra Nevada mountains, a single white fir tree is generating data that could help predict the species’ fate as it responds to climate change.

The tree, dubbed Critical Zone Tree 1, is threaded with sensors measuring its sap flow and the volume of water sucked up by its roots and emitted from its canopy as vapor. It’s named for the Southern Sierra Critical Zone Observatory, one of twelve such observatories across the country that peer into the thin layer of earth and atmosphere that sustains all life.

In the Sierra observatory, there’s a particular interest in how the range’s various tree species will respond to projected changes in temperature and precipitation. Before researchers can project the effects on an entire species, they need to zoom in on an individual member. Critical Zone Tree 1 will help measure the response of a single white fir.

WEB EXCLUSIVES

Read more @ fondriest.com/news

NEX GENERATION
data loggers

• Completely submersible
• Radio, cellular or satellite telemetry
• Self-powered with replaceable batteries
• Popular sensor compatibility

WEB EXCLUSIVES
Next Generation data loggers

• Completely submersible
• Radio, cellular or satellite telemetry
• Self-powered with replaceable batteries
• Popular sensor compatibility
Buoy tracks great white sharks near North Florida beaches

University of North Florida researchers are tracking great white shark travel patterns near some northeastern Florida beaches, according to the Florida Times Union.

Many great white sharks have been tagged by scientific groups over the years. The researchers are monitoring the sharks with sensors that detect signals emitted from the tracking tags. Each sensor has a distinct signal which can be paired to a shark on record.

Sensors will be deployed off buoys in three areas near Jacksonville, Fla. and one area off the shore of St. Augustine, Fla. All the sensors will be placed within a half mile of the shore as many great white sharks pass near the shore during their travels.

Last year Oceanic, a nonprofit research group, deployed a 16-foot great white shark traveling through the Jacksonville Beach surf zone.

Source of seemingly endless Arctic snow investigated

Researchers at Michigan Technological University are looking into extreme snow in the Arctic, according to a release from the school. Snowflakes require a speck of dust or another base to form around, but it’s unclear why it continues to snow in pristine areas after dust particles have been cleared from the air.

To investigate, the researchers are using data on Arctic clouds to develop models of how snow forms. The clouds have been studied extensively and the Arctic is an area known for long periods of extreme snowfall. But instead of only considering dust particles for snow formation, the models allow for snowflakes to form around other particles. With this modification, researchers say extreme, seemingly endless snowfall can be explained. They note that these other particles provide bases for larger snowflakes because they stay in the atmosphere longer, allowing for more ice crystal build up, before falling to Earth.

Massive canyon found under West Antarctica ice

Using imagery from NASA’s MODIS satellite, researchers from the University of North Florida have discovered a new feature beneath West Antarctica’s ice, according to a release.

A narrow valley, the researchers say it may become easier to predict changes to Antarctica ice, which is an area known for long periods of extreme snowfall. But instead of only considering dust particles for snow formation, the models allow for snowflakes to form around other particles.

Seismometers capture crowd activity at Seattle Seahawks game

Seismologists at the University of Washington and the Pacific Northwest Seismic Network have installed earthquake sensors at the Seattle Seahawks’ CenturyLink Field, according to a release.

The sensors captured seismic activity generated by the crowd during a playoff matchup between the home team and the New Orleans Saints on Jan. 11. Along with capturing some undulating waves, researchers installed the systems in less than a day, simulating a “test-drive” procedure that is carried out following significant earthquakes.

Data recorded during the game has been posted online, along with analysis by the researchers. Installation of the two strong-motion seismometers added to an existing station at the stadium.

Great Lakes only U.S. region to gain wetlands

A federal report released in November 2013 indicates that the Great Lakes region was the only one to see an increase in its total area of coastal wetlands, according to the Associated Press. The results are likely due to restoration efforts in the region.

These efforts include new levees, canals and pumps to regulate water levels. Fish passageways are also being constructed in efforts to make better homes for wildlife and limit the spread of invasive species.

The new gas, named perfluoroctyltributylamine (PFOTBA), does not occur in nature. Though it is much more scarce in the atmosphere than carbon dioxide, researchers say it takes a full 500 years or more to decompose, so each molecule has a compounded potency.

The researchers measured its concentration in the Toronto air and found it to be at 0.18 parts per trillion, far from the current atmospheric CO2 concentration, which is near 400 parts per million. PFOTBA is used in many electrical applications, such as making transistors and capacitors, according to The Guardian.

Mussel backpacks monitor molusks’ filtering capabilities

University of Iowa researchers are gluing electronic monitoring “backpacks” to the shells of river mussels to learn more about the creatures’ filtration capabilities, The Gazette reported.

The backpack sensors measure gape, or the opening and closing of the shell. By measuring gape, the UI researchers can determine how much algae the mussels are filtering. Each backpack costs about $100.

Waterways with large mussel populations tend to be cleaner than those without, but pollution and dredging have severely affected the mollusks’ numbers across Iowa and other states. The researchers plan to use their gathered data to gain support for habitat restoration in the state.

Landsat 8 satellite records coldest temperatures on Earth

The new Landsat 8 satellite, operated by the U.S. Geological Survey, has charted a temperature of minus 133.6 degrees Fahrenheit, according to a release from NASA. The temperature was recorded on the East Antarctic Plateau and is only a few degrees shy of the world’s record low.

The coldest temperature ever recorded was minus 135.8 degrees Fahrenheit, recorded near Antarctica’s Dome Argus in August 2010. The lowest temperature of 2013 was recorded at a location nearby, coming in at minus 133.5 degrees Fahrenheit.

NASA officials say the temperature data is an example of the new satellite’s capabilities, including its thermal infrared sensor. The instrument was designed for measuring temperatures at the extremes and assembled at the Goddard Space Flight Center.

Wind-propelled sea drones complete 2,000-mile journey

An unmanned, wind-powered watercraft successfully navigated over 2,000 miles last month in a test of its seaworthiness, Businessweek reported.

Developed by Saildrone, the SD1 unmanned watercraft arrived in Kaneohe, Hawaii in early November. It left San Francisco 34 days before, traveling through gale winds and storms on its way across the Pacific.

The SD1 will eventually be used as a research platform and will monitor oceanographic conditions and marine life for the National Oceanic and Atmospheric Administration. The craft can be fitted with sensors and other instruments, and will use a two-way satellite to transmit data to and from Saildrone headquarters.

Saildrone has no immediate plans to market the SD1, and said the company is currently in the research and development phase.
A band of stained water flowing out of the Caloosahatchee River into its estuary along the Florida Gulf Coast this summer was among the most visible signs of stress brought on by abundant controlled releases from Lake Okeechobee into the river. The releases from the lake, which feeds the Caloosahatchee, were a flood control measure during Florida’s record rainfall in 2013. The colored dissolved organic matter shades out the estuary’s seagrasses that shelter juvenile crabs and fish.
Place-based Learning Course

A geology course at Westfield State University in Massachusetts is looking beyond bedrock and soil profiles, asking its students to explore their personal connections to familiar landscapes. The course, titled “A Sense of Place,” is taught by Tarin Weiss, an associate professor of chemical and physical sciences. Students pick a place that has been important to them that will be the focus of scientific and creative investigations.

Weiss prepares students — some science-majors, some not — for their scientific investigations by covering a wide variety of topics in class, from plant diversity to groundwater quality. Students also get hands-on experience taking soil cores and temperature measurements as well as plot sampling for plant species. The course readings — along with five researchers from Penn State University, Colorado School of Mines, and Colorado State University — provide students with many opportunities to follow up on field investigations, Elvidge said, whether it’s as simple as habitat observation or something more advanced.

“We know that students doing even some of the basics of that, they’re scoring 30 percent higher on state science testing,” she said. “It’s really important, that engagement in the field.”

The River Mile

In Central Washington, an initiative to introduce kids to bona fide scientific research has earned some students of Waterville Elementary a surprising honorary distinction.

“Their fourth grade students are the world’s leading experts in the short-horned lizard of the Columbia Plateau,” said Janice Elvidge, education specialist for the Lake Roosevelt Watershed. Student research efforts at Waterville served as a model for the Redging River Mile program, which the school now participates in along with another 20 school districts across the state of Washington.

The goal is greater than just getting kids outside for the sake of being outside. Research has shown improved academic performance from students involved in field investigations, Elvidge said, whether it’s as simple as habitat observation or something more advanced.

“We know that students doing even some of the basics of that, they’re scoring 30 percent higher on state science testing,” she said. “It’s really important, that engagement in the field.”

Drained Lake Study

In 2008, problems with a nearby dam resulted in the draining of the man-made lake, leaving little more than a trickling stream and a ghost town of vacant docks and grounded watercraft. As part of the Suiattle Natural Resource Area, Sullivan and crew instrumented Lake Perez and its watershed to monitor groundwater levels, barometric pressure and streamflow. The students and faculty also collected water chemistry data. As might be expected in a geochemistry course, the study examined a number of soil factors, including gamma radiation, mineral composition and tansonomy.

“The research will help determine the influence of damming on surface and groundwater. As the dam is expected to be repaired and the lake refilled later this year, the researchers will have a chance to obtain a before-and-after report of the lake and watershed.”

Soil Remediation Class

Kansas State University professors transformed a plot of land from a problem to a classroom teaching students on the fly to remediate nutrient pollution.

Sougata Datta, an associate professor of geology, and Nathan Nelson, an associate professor of agronomy, taught students to evaluate, sample and remediate land using Kansas Department of Health and Environment protocols.

Datta’s geoLOGY students collected soil cores and contracted drillers to dig groundwater sampling wells based on land gradient and likely groundwater flow. They sampled wells for pH, salinity, dissolved oxygen and temperature with a water quality sonde. They found three out of four groundwater testing wells contained nitrate levels above the U.S. Environmental Protection Agency’s drinking water standard.

Once all the groundwater data were collected, Nelson’s team of students started analyzing soil quality to formulate a cleanup plan. Following in-depth analysis, they recommended a combination of excavation and planting trees to absorb contaminants.

Nelson said it will be several years before the phytoremediation process reaches its full potential. Future classes will be monitoring groundwater to keep an eye on the nitrate levels and the effectiveness of the phytoremediation.

The experience has been invaluable, Datta said. He mentioned that several students list the project on their resumes and bring it up with possible employers during interviews.

“Trying to plug them into issues within their communities where these places exist is another goal of the course,” she said.
The finless, hypersaline waters of the Great Salt Lake in Utah don’t always engineer the greatest enthusiasm for the system amongst the residents along the Wasatch Front.

"Joe Citizen is going to come up and say, 'It's a worthless system.' They’re stopping and they’re getting energy on the Great Salt Lake," said David Naftz.

After historically sparse monitoring efforts on the Great Salt Lake, the USGS is helping to usher in a new era of intensive data collection.

"You actually get this density-driven flow that’s coming from the north arm that’s diving under the less-saline part of the south arm, and it’s created this kind of permanently stratified layer that has some pretty interesting chemistry going on," Naftz said.

The difference in densities between the two arms causes water to flow through a constricted breach in the causeway, which has important effects on the structure of the water column in the south arm. The lake functions and responds to human-caused stress, the USGS is finding, monitoring efforts that will help equipe managers with unprecedented data.

Though some of the agency’s most advanced monitoring initiatives on the lake have gone into place within the last five years, they’ve operated a lake elevation gauge there since 1938. By taking observations documented by the region’s early pioneers, USGS scientists have back-calculated lake levels to make a long-term record that goes back to the late 1800s. Since it’s a shallow lake with no natural outflow, water levels are particularly important there.

"The lake elevation just drives so many chemical processes in the lake," Naftz said. "Because the shoreline gradients are so low in that system, a one-foot drop in lake level can expose thousands of acres of sediment.

The USGS is also monitoring how water flows through a fault-related, spillway-like structure on the lake bottom south of the causeway. Naftz said high-density water moving through the breach builds up behind the 2-kilometer-wide spillway until a disturbance like high winds sends the dense water over the edge and farther south into the lake. A series of acoustic Doppler velocity meters installed along the structure in 2012 has captured flows of up to a half-meter per second.

"When it’s a 2-kilometer wide structure, you’re moving quite a bit of salinity and other nasty things across that spillway into the more southern portions of the lake," Naftz said.

The data at this spot is especially valuable for managers because the railroad company responsible for the causeway is considering building a second breach. The acoustic instruments will provide a before-and-after picture of how the dynamics of the system have changed.

In another study, the agency released dye into a tributary and tracked its speed with an AUV. The data showed that the inflow remained in a thin layer on the surface and moved across the lake quickly. Within an hour, Naftz said they had already detected dye more than a kilometer offshore. The results suggest how inflow from mine discharge could distribute contaminants across the lake.

Completing installation of the LakeESP platform.

"It is a very dynamic system when you get some of these seiche events, and you can get some vertical mixing at that density boundary," Naftz said. "At least our hypothesis is it can move some of the methylated forms of mercury up into the more biologically available water in the lake where it’s more available to the brine shrimp."
In 1992, Hurricane Andrew made landfall on South Florida with winds gusting up to 170 miles per hour. The storm inflicted $26.5 billion worth of damages in the state. Scientists responded by advocating for improved wind research to reveal what had happened and minimize such extensive damage in the future.

The key question: how can structures be designed to better survive hurricanes?

A team of engineers at Florida International University came together in the early 2000s to design a wind-generation system that could be used to study structure resiliency. Their initial prototype had two fans and propelled wind speed of 120 mph. Fast forward a decade and their original design has become the basis for what is today the Wall of Wind, a one-of-its-kind facility generating maximum wind speeds of 160 mph that is improving structure designs and answering other important questions in hurricane research.

The facility is similar to a wind tunnel in that flow conditions can be controlled and different wind profiles can be introduced.

"Natural winds have a profile and turbulence," said Peter Irwin, professor of practice for the Wall of Wind. "We want to make sure that we impact whatever we're testing with the right kind of wind."

So triangular segments at the front end of the wall help curve wind where it needs to go. Turntables downwind support test structures so scientists can consider different wind impact angles.

The Wall of Wind, which was built in 2012, has blasted trees, roof tiles, solar panels, silos and Florida International University’s Wall of Wind generates 160-mph gusts to test hurricane-safe buildings

BY DANIEL KELLY

"Load cells, which are kind of like little hockey pucks, are put on points in structures to measure the forces at that point," said Irwin.

Other sensors include cobra probes, which are small sensors that instantly measure rapidly fluctuating wind velocity and direction. Accelerometers help record the vibrations in structures, which Irwin calls "test specimens." Of course, there are video cameras to capture the destruction. The facility is also equipped with devices to measure displacement.

All the tech goes into making structures more efficient, Irwin says, and more likely to withstand a hurricane. Designing structures from the ground-up instead of retrofitting them makes them more stable and saves money over the long term.

"It’s a well-equipped facility, probably the fastest facility of its type. It’s open to testing to anybody," said Irwin. "Our only goal is to allow everyone — society — to build more resilient structures."
WQData LIVE automates data management and project collaboration across multiple sites and users all in one secure datacenter. Any web browser can access data streamed from remote devices. All configuration, processing and data sharing can now be performed in the NexSens cloud.

Thru a digital revolution is changing the way scientists collect data, it’s unlikely those advancements will ever completely supplant good old pen and paper. But anyone who spends some time with NexSens’ new Digital FieldBook certainly won’t miss the days of losing pens, running out of paper or making sense of an unkempt notebook.

The FieldBook’s user-friendly interface lets users store observations, photos and manually-entered data alongside automated data from a web-enabled NexSens data logger. It’s easy to organize and simplify collaboration among members of research teams.

The FieldBook supports custom forms, which help tailor data logging and tracking to a particular monitoring project. Users can select from multiple fields, including text, numbers, notes and customizable lists. The parameter field allows the user to specify what type of data is being entered along with the unit of measure. This allows the user to take samples with any sensor and manually enter them into the FieldBook.

This virtual notebook is a new feature of WQData LIVE, an advanced web datacenter designed by NexSens to accommodate any data monitoring application. WQData LIVE users can now manually enter data, notes or images while in the field. Because the FieldBook is tied into the web datacenter, manually entered data and automatic data streamed from a logger can be viewed, manipulated and compared side by side.

Each WQData LIVE project can support an unlimited number of FieldBooks. This means that every member of a research team can have his or her own virtual notebook for easy collaboration.

Other WQData LIVE features include web applets, public portals, site maps, data sharing and photo galleries. The datacenter’s device-to-web integration makes it possible for a web-enabled data logger to stream data to the cloud, where it’s accessible from any PC or mobile device with a web browser.

WQData LIVE’s report feature gives the user many options for displaying data in a concise, easy-to-digest manner. A typical report contains a data table and an infographic generated using logged data or data from the FieldBook. Reports can also be customized to display multiple parameters, condensed data and information from preset time ranges.

NexSens provides a basic version of WQData LIVE for free. Professional and enterprise plans are also available. Learn more at www.WQDataLIVE.com.
Remotely operated vehicles are often used to explore hard-to-reach places underwater, but that doesn’t mean the cost of an ROV is out of reach for would-be explorers.

OpenROV is an open-source project making ROVs available to almost anyone. “The intention of the project is to create an ROV that is low-cost and easy enough for anyone to build, but that is still capable of doing relevant scientific work and exploration,” said OpenROV founder Eric Stackpole in the OpenROV Kickstarter video.

OpenROVs come in user-assembled kits that cost less than $1,000. The body is made from laser-cut acrylic. All the components from the propulsion system to the internal electronics are off-the-shelf. “None of it was designed to go underwater,” said OpenROV co-founder David Lang in an interview. “We just adapted it and made it work.”

The project started when Stackpole, a NASA engineer working on small satellites, wanted to explore an underwater cave in Northern California. Hall City Cave is rumored to have gold stashed somewhere in its depths, hidden by Native Americans who were supposedly slain for stealing it.

Stackpole, Lang and a few other enthusiasts developed a prototype to explore the cave. The project gained a following as the team shared their progress online.

They started a Kickstarter campaign to fund the project with the hope of creating a product that many people could use. They asked for $20,000 over the course of a month in the summer of 2012. They promised donors of $775 or more an OpenROV kit. By the end of the donation period, the team had $111,622 in donations.

With new-found capital, the team continued to move forward. More programmers, engineers, and enthusiasts came onboard to donate their expertise to the ROV’s operating system code and system design.

“It’s moving quickly,” said Lang. “And the best part about it is it’s really adaptable.”

The OpenROV team tested a prototype in Hall City Cave—the site of a rumored stash of stolen gold.

OpenROV was designed with payload space for sensors, samplers or additional attachments. Between the ROV’s battery compartments, four threaded rods can be attached to hang sensors.

Dedicated users on the OpenROV website constantly share developments in wikis and a web forum. Discussions range from technical to outright fun. One can pick up a discussion on combating invasive lionfish or critique the latest code update for the communications system.

People have been using OpenROVs for everything from scientific instruments to toys. Its affordability allows researchers in impoverished nations to conduct habitat surveys and do underwater exploration.

The ROV is rated to dive up to 100 meters, though so far it has only been tested as deep as 20 meters. OpenROV is 30 centimeters long, 20 centimeters wide and 15 centimeters tall. It weighs approximately 2.5 kilograms and is neutrally buoyant once submerged.

It can move through the water at approximately 1 meter per second. Battery life lasts about an hour and a half.

The ROV typically takes a few days to assemble and is exploring soon after, though like any good project there’s always some tinkering that has to be done.

Lang said programmers know users would like to add their own computing functionality to the ROV. They left plenty of space on the Beagle Bone for users to program functions and add in hardware.

To pilot the ROV, users connect it to their computer via an Ethernet port. A web browser interfaces with the ROV via its IP address. The keyboard controls movement. A web camera allows users to navigate through the deep.

OpenROV was designed with payload space for sensors, samplers or additional attachments. Between the ROV’s battery compartments, four threaded rods can be attached to hang sensors.

BY AUSTEN VERRILLI

OpenROV

An open-source project to produce affordable remotely operated vehicles is opening up underwater exploration and monitoring to scientists on a budget.

Lang said programmers know users would like to add their own computing functionality to the ROV. They left plenty of space on the Beagle Bone for users to program functions and add in hardware.

To pilot the ROV, users connect it to their computer via an Ethernet port. A web browser interfaces with the ROV via its IP address. The keyboard controls movement. A web camera allows users to navigate through the deep.

OpenROV was designed with payload space for sensors, samplers or additional attachments. Between the ROV’s battery compartments, four threaded rods can be attached to hang sensors.

Dedicated users on the OpenROV website constantly share developments in wikis and a web forum. Discussions range from technical to outright fun. One can pick up a discussion on combating invasive lionfish or critique the latest code update for the communications system.

People have been using OpenROVs for everything from scientific instruments to toys. Its affordability allows researchers in impoverished nations to conduct habitat surveys and do underwater exploration.

The ROV is rated to dive up to 100 meters, though so far it has only been tested as deep as 20 meters. OpenROV is 30 centimeters long, 20 centimeters wide and 15 centimeters tall. It weighs approximately 2.5 kilograms and is neutrally buoyant once submerged.

It can move through the water at approximately 1 meter per second. Battery life lasts about an hour and a half.

The ROV typically takes a few days to assemble and is exploring soon after, though like any good project there’s always some tinkering that has to be done.

Lang said now the OpenROV team is working to keep up supply and watching for user developments. “At this point, we’re really just watching the community,” Lang said. “We’re going to watch and to learn because the users are the best indicators of what this technology will best be used for.”
In early 1991, researchers were locked into Biosphere 2, a 3.14-acre experimental environment. They were left to survive within the indoor elements and successfully lived for two years with minimal outside intervention. By 1995 the indoor ecosystem could not sustain itself by recycling air and water within the facility. Biosphere opened its doors and windows to let in fresh air and new ecological research.

Biosphere’s sealed earth experiment became extinct, but over the years the facility evolved into an indoor environment research station sealed under 7.5 million square feet of glass. When the University of Arizona took over the massive indoor Earth in 2007 the science department wanted to optimize their unique resource. “We were challenged by the dean of science to come up with an idea and experiment that was totally new and could only be done at Biosphere 2,” said Peter Troch, science director of Biosphere 2.

After much discussion among professors and researchers across disciplines, the department decided to use the Biosphere to look back at two fundamental components of the earth’s landscape: soil and water. While many events have shaped the earth, much of the riverine landscape was sculpted and transformed by rain running over and through the soil. It forms landscapes called hillslopes leading into rivers.

The science team decided to add on to Biosphere 2, creating the Landscape Evolution Observatory, so they could simulate how hill slopes evolved from the beginning. “What if we could go back to time zero?” Troch said.

After much discussion among professors and researchers across disciplines, the department decided to use the Biosphere to look back at two fundamental components of the earth’s landscape: soil and water. While many events have shaped the earth, much of the riverine landscape was sculpted and transformed by rain running over and through the soil. It forms landscapes called hillslopes leading into rivers.

The science team decided to add on to Biosphere 2, creating the Landscape Evolution Observatory, so they could simulate how hill slopes evolved from the beginning. “What if we could go back to time zero?” Troch said.

Hydrologists have been studying and modeling the evolution of landscapes for years, but this will be the first controlled, large-scale, long-term experiment to look at the evolution of a hill-slope.

Three new additions in Biosphere 2 house massive troughs. Each sits on a 10 degree angle and is 11.25 meters wide and 29.60 meters long.

The troughs hold mineral-rich volcanic basalt that is one meter deep. The volcanic emission was chosen as researchers think it most closely resembles material that formed Earth’s landscapes and eventually became soil as we know it.

Above the troughs, sprinkler systems simulate precipitation. Researchers will monitor infiltration of water into the soil and its movement beneath the surface. They expect that it will act as a catalyst for physical and chemical changes to the volcanic basalt. “We will see significant weathering and formation of clays,” said Troch.

A wide variety of sensors are implanted in the soil to measure changes in soil chemistry and water flow characteristics.

Ten highly sensitive load cells beneath each giant trough continually track the weight of the soil and water inside.

Nearly 500 soil and water potential sensors are in each hillslope. “These measure the pressure of water at local points and are important for determining the direction and velocity of water movement and can indicate the onset of water-stress for plants,” said Troch. “They measure pressures that are less than atmospheric pressure, indicative of water that is under suction due to capillary forces in the soil.”

Each slope also contains about 500 soil water content sensors and water samplers. Vaisala carbon dioxide sensors will measure carbon dioxide shifts in the soil.

Other sensors include 34 vibrating piezometers in the soil, which measure water pressure greater than atmospheric pressure. “It basically allows us to see if there’s a water table developing in the soil or not,” said Troch.

Nearly 1,000 soil-temperature sensors monitor temperature gradients in each slope. Water and gas samplers give researchers the ability to grab samples on demand. Tipping bucket gauges track runoff from the slopes.

The entire experiment will run for about 10 years. It will begin by watching the weathering and development of soil. Then the researchers will add seeds to the hillslopes to see how plants affect water flow, retention and soil.

One hillslope is fully operational with sensors deployed in and above the soil. Researchers are using it as a starting point to determine how to finish preparing the other two for long-term experimentation. They plan to start long-term simultaneous experiments for all three this summer.

Troch said researchers spent a long time modeling and designing the experiment before building the slopes. Still, there is uncertainty as an experiment at this scale has never been performed.

He said one outcome he hopes to generate is interest and participation among the scientific community.
Scientists weren’t aware of the impact of Saharan dust on Houston air quality until Shankar Chellam accidentally measured it

BY JEFF GILLIES

The petroleum refineries and other industries concentrated around Houston give air quality regulators there plenty of local pollution sources to keep track of. Meanwhile, scientists are helping them keep a closer eye on a surprising, far-flung source of particulate matter: dust from the Saharan Desert.

It’s not news that dust from arid North Africa escapes into the atmosphere and is redistributed hundreds to thousands of miles away, but research on the phenomenon has focused mostly in its influence on geology and climate.

The effects of Saharan dust on urban air quality in other continents has been less understood until recently. One reason for the increased attention in Texas is a 2012 tightening of federal air quality standards that reduced the acceptable concentrations of airborne particulate matter. If states violating the standard can show that some portion of the pollution came from sources outside of their regulatory control, it won’t count against them.

The stricter rules make parsing the sources of pollution and their relative contributions all the more important, according Shankar Chellam, professor of civil and environmental engineering at the University of Houston.

“Now the state is investing and is interested to know essentially all the sources,” Chellam said. “Every speck of dust, they want to know where it came from.”

Chellam and his colleagues have developed a method that not only detects Saharan dust in local air samples but also quantifies its contribution to total particulate matter levels. The results of their first attempt were recently published in the journal Environmental Science and Technology.

Their method should improve upon past efforts, which have mostly relied on satellite images of airborne plumes crossing the Atlantic. The problem with that approach is that it doesn’t quantify the amount of dust in the areas that matter most. The images are limited to identifying dust high in the atmosphere and can only show whether the dust was present, not how much is there.

“That’s where we come in, because our measurements are at ground level,” Chellam said. “We sample the air that people actually breathe, not just the air that is 2 to 6 kilometers from the earth’s surface.”

Chellam came into Saharan dust research mostly by accident. His past research focused on identifying the chemical signatures for specific sources of air pollution like petroleum refineries and motor vehicles. By collecting samples and analyzing the levels of around 40 metals, he and his collaborators can develop an elemental profile for each source.

While collecting data on Houston’s industrial pollution sources in 2008, they found certain days showed increased levels of particulate that couldn’t be tied to any industrial sources. Their chemical analysis of the particles from those days seemed to signal it was from a natural source. They turned to satellite imagery and found a plume of Saharan dust had indeed made its way to Houston.

“Our sampling that was done in Houston was not at all based on the Saharan dust,” Chellam said. “It was an accidental discovery that this impacts Houston at this great extent.”

Once the researchers knew they were dealing with Saharan dust, they turned to an air sampling station on Barbados maintained by Joseph Prospero, emeritus professor of marine and atmospheric chemistry at the University of Miami. Prospero has used the station there to study the geologic and climatic effects of Saharan dust. It was an ideal place for Chellam’s group to gather a sample that had crossed the Atlantic but hadn’t yet mixed with the industrial and natural dust of the continental United States.

The researchers then developed an elemental fingerprint for the Saharan dust and plugged it into a model along with the signatures for refineries and other local sources. The results show that, for three days in July, sand transported to Houston from North Africa made up more than half of the particulate matter pollution at the sampling sites.

So far the researchers have only applied their method to the samples from the 2008 Saharan dust event, though the results were consistent across several sampling sites in Houston and two categories of particulate matter. Chellam said their next step is to secure funding to analyze more events and prove that the method is robust and can be applied universally.

“I believe that our method can separate the various sources carefully,” he said. “We can provide that information to the regulator, and they can do what they need to do.”
King County’s water quality monitoring in Puget Sound began in the 1960s as an attempt to make sure the municipal wastewater discharges weren’t degrading the habitat. It has since grown into a multilocalated and high-tech monitoring initiative that rivals the breadth of some state programs.

The county has collected near real-time, high-frequency data since 2008 when it partnered with the Seattle Aquarium to host two moored water quality sondes. The instruments, both YSI 6600 EXI, measure temperature, conductivity, pressure, dissolved oxygen, turbidity, pH and fluorescence every 15 minutes. A weighted pulley system keeps the sondes at relatively fixed depths, with one around 1 meter below the surface and the other 10 meters below.

The Point Williams buoy carries another sonde, and two more are installed in inner Quartermaster Harbor. These are mounted to pilings and remain stationary at depth changes with tides. This allowed their pressure sensors to detect a rise in the water’s surface after the 2011 tsunami that devastated the Japanese coast. Kimberle Stark, a marine biologist at the University of Washington, remembers the day vividly.

“The tsunami wave came in and the water just started sloshing around for like three hours. And that mooring picked it up, which was amazing.”

It was also useful to scientists. Stark said the data will help efforts to predict the effects of future tsunamis on the sound.

The county operates profiling platforms on lakes Washington and Sammamish. The data is published live on the county’s website. Program staff hear quickly when, even the data supply is cut off for maintenance or other downtime, whether it’s by boat since the early 1990s. Water quality monitoring on the lakes goes back another 50 years, when researchers at the University of Washington began collecting data on Lake Washington. Those long-term data showed that the lake has been warming and stratifying earlier and earlier in the year, which affects the development of a spring bloom that the ecosystem depends on for food for the rest of the year.

Even though the University of Washington data could show those effects, they were likely only sampling every two weeks, DeGasperi said. Now that the county has a system measuring temperature and fluorescence profiles every day, he said, they have a way to really pin down when the system is going to be back up.

“The YSI platforms measure a full suite of parameters at every meter along a vertical profile more than 50 meters deep on Lake Washington and 20 meters deep on Lake Sammamish. The data from the platforms compliments a once- or twice-monthly sampling program that the county has conducted for the real-time data published by the county’s water quality monitoring programs is any indication, the relationship is mostly positive.

The county operates profiling platforms on lakes Washington and Sammamish. The data is published live on the county’s website. Program staff hear quickly when the data supply is cut off for maintenance or other downtime, whether it’s by boat since the early 1990s. Water quality monitoring on the lakes goes back another 50 years, when researchers at the University of Washington began collecting data on Lake Washington.

Those long-term data showed that the lake has been warming and stratifying earlier and earlier in the year, which affects the development of a spring bloom that the ecosystem depends on for food for the rest of the year.

Even though the University of Washington data could show those effects, they were likely only sampling every two weeks, DeGasperi said. Now that the county has a system measuring temperature and fluorescence profiles every day, he said, they have a way to really pin down when the lake stratifies and the algae appear.

“When these algae blooms can develop into large amounts of algae over the course of a few days, so when you’re even sampling every two weeks you can miss the peak of these events,” he said. “We can start to take a better look at the trends through time of the timing of the stratification and the effect on the spring algae bloom, and some of the other details that you don’t as easily see if you’re just going out every few weeks.”
A cutting-edge method for sensing water temperatures is helping the U.S. Geological Survey identify tucked-away cold water habitats in the dam-altered Delaware River that allow an endangered mussel to survive there.

Dams on the Upper Delaware River that create drinking water supply reservoirs for the New York City metro area also modify flows, sometimes leading to dramatic fluctuations in river level that can affect the species living there.

“The hydrologic regime is essentially the master ecologic variable that controls what’s happening in the river,” said Martin Briggs, research hydrologist with the USGS Office of Groundwater. Sometimes water levels drop low enough to expose the river bottom. “You have, essentially, a dry bed, which you can imagine is not a good situation for mussels.”

The people who manage the dams want scientific information about the habitat of organisms affected by dam operation, especially for the dwarf wedgemussel, which is afforded legal protection as a federally listed endangered species. The USGS has counted the mussels — a species sensitive to water temperatures — in the Delaware since 2000. The scientists conducting those surveys have anecdotally reported colder water temperatures — in the Delaware since 2000. The scientists conducting those surveys have anecdotally reported colder water temperatures during low flows.

In an effort to confirm and quantify those groundwater inflows, Briggs and colleagues, in cooperation with the U.S. Fish and Wildlife Service, installed a high-resolution fiber-optic temperature sensing system in a place in the river where dwarf wedgemussel numbers were particularly strong. The results of the study — perhaps the first to use this setup in flowing water — identified a bankside groundwater seep that sent a plunging plume of cold water into the channel and along the stream bed where the mussels live.

Measuring temperature with fiber-optic cables was developed by the oil industry for keeping an eye on pipes, but has been adapted for environmental applications over the past eight to 10 years, Briggs said. The technology works by firing a laser pulse down the fiber, some of which is scattered back to a receiver. A portion of that backscatter is temperature dependent, which allows the researchers to back-calculate temperature measurements.

The highest spatial resolution this method can achieve is a centimeter-scale measurement at every meter of cable. That’s fine for laying long lengths of cable along stretches of river, but isn’t very useful for profiling temperatures in the 20- to 40-centimeter depths where the research team had identified the cold water plume.

To get down to a finer resolution, they used a twist on the method — literally. They developed cables that could be coiled around a core, in this case a 5-centimeter-radius PVC pipe. A meter’s worth of cable wrapped around the pipe placed two temperature-sensing points just 1.4 centimeters apart.

The researchers pounded the meter-long, cable-wrapped cores into the stream bed every two meters in a line perpendicular to the bank and extending out into the plume. That gave them a transect with more than 300 temperature-sensing points. Data collected at 4- and 10-minute intervals over several days revealed a plume of cold water that entered the stream and dived below the warmer surface waters.

“That was really controlling the stream bed temperatures in the upper horizon where the mussel lives,” Briggs said. “Something about that inflow is likely influencing their survival.”

That influence could be a matter of keeping water temperatures low enough — in this case, up to 9.5 degrees Celsius cooler than the surrounding water — to facilitate some part of the mussel’s life process that is disrupted by warm water. Another hypothesis is that water trickling down from the seep could provide the mussels with crucial moisture when their beds are exposed during low flows.

Briggs said the centimeter-scale measurements made possible by the modified fiber-optic method was important for characterizing the mixing dynamics in the shallow water. It also provided the data needed by models that the researchers used to quantify just how much water was entering the stream through the seep.

The study, published in the journal Environmental Science and Technology, serves as a proof-of-concept for using fiber-optic cables for gathering high-resolution temperature data in rivers, which Briggs said hadn’t been done before. It also provides quantitative data that helps cement the link between groundwater seeps and dwarf wedgemussel habitat.

“If we’re going to protect this habitat, we have to know why the habitat exists,” Briggs said. “That also helps us discover potentially more undiscovered habitat in the future.”

DWARF WEDGEMUSSELS

With an average lifespan of around 12 years, this federally endangered species is a relatively short-lived mussel. Like most mussels, its larva develop while parasitizing fish gills. Confirmed host species include the tessellated darter, Johnny darter, slimy sculpin, mottled sculpin and young Atlantic salmon.

BY JEFF GILLIES
A construction project is underway on a Northern California dam to bolster flood protection for the Sacramento region, an area federal agencies say is among the most at risk for flood damage in the United States. An engineering firm’s novel water quality monitoring strategy is helping to keep the operations on schedule while protecting the environment.

The Folsom Dam Auxiliary Spillway project is an approximately $900 million cooperative effort between the U.S. Army Corps of Engineers and the U.S. Department of the Interior’s Bureau of Reclamation that will help the Sacramento region achieve a 200-year level of flood protection. Work on the project on the American River includes a new spillway that will give operators a 200-year level of flood protection. Work on the project on the West Coast, the construction company contracted for the fourth phase of five phases of the spillway project.

Spot sampling is time-consuming and subject to error, both of which could be costly for a public safety project on a schedule. That’s especially the case on subalpine, Western Sierra lakes like Folsom where turbidity is naturally very low to begin with, which usually makes for strict shut-down thresholds. That could make for situations where a $235 million dollar project is paused indefinitely because of equipment malfunctions or natural fluctuations brought on by storms or seasonal changes in lake conditions.

Data from the buoys are relayed back to a computer at the job site running NexSens’ Chart software, which calculates rolling averages and compiles reports every four hours and every 24 hours. The software will also send out alerts to project managers if a water quality constituent rises above a predetermined amount above background, triggering the “adaptive” elements of Cardno’s management plan. Rather than immediately shutting down work, crews get a chance to check for anomalies in the data and modify project operations prior to triggering a shut-down.

“You send someone out in the field to calibrate the instruments and make sure you don’t have a plastic trash bag wrapped around the monitor. We’ve seen tiny tiny fish that decided to take up residence inside of our instrument housing,” Spranza said. “All sorts of stuff that’s not project related but had we not had this system would have immediately stopped the project. It’s a simple grab sample approach was used.”

If the issue turns out not to be a fluke in the data, the crew gets a chance to take preliminary steps to address the problem. For example, they’ll check that the sediment curtain around the dredge and deposition sites is working properly, or that there has not been a sudden change in background conditions. If they can’t address the source of the water quality concern, and it is identified as coming from the project, then Spranza works with the Kiewit project team, regulatory agencies and project partners to determine if the issue can be resolved, or if the project needs to be temporarily shut down while a solution is worked out.

“When you have a robust dataset, it actually helps to keep the project moving,” Spranza said. “So far we’ve lost zero days of work due to water quality on this project, and they’re out there every day except for Sunday moving dirt.”

The Folsom dam, built in the 1950s, is part of the federal Central Valley Project, a water management plan that moves water for municipal and agricultural uses from northern California to drier regions of the state through a system of pumps, canals, reservoirs and other feats of engineering. The new spillway’s gates will sit 50 feet lower than those on the main dam, allowing flood-related drawdowns to begin earlier. The dam was originally built to pass up to 567,000 cubic feet of water per second. The new spillway will add the capacity to move another 300,000 cubic feet per second — more than three times the average flow rate of Niagara Falls.

The firm is working on compliance issues for Kiewit Infrastructure West Co., the construction company contracted for the fourth phase of five phases of the spillway project.

Spot sampling is time-consuming and subject to error, both of which could be costly for a public safety project on a schedule. That’s especially the case on subalpine, Western Sierra lakes like Folsom where turbidity is naturally very low to begin with, which usually makes for strict shut-down thresholds.

That could make for situations where a $235 million dollar project responsible for the flood protection of 40 linear miles downstream of the dredging site is working properly, or that there has not been a sudden change in background conditions. If they can’t address the source of the water quality concern, and it is identified as coming from the project, then Spranza works with the Kiewit project team, regulatory agencies and project partners to determine if the issue can be resolved, or if the project needs to be temporarily shut down while a solution is worked out.

“When you have a robust dataset, it actually helps to keep the project moving.”

— John Spranza
Senior Consultant with Cardno ENTRIX

ABOUT CARDNO ENTRIX
Cardno ENTRIX is an environmental consulting firm with 200 offices in North and South America and 300 offices worldwide. The firm offers services in water and natural resources management, liability management, permitting and compliance. Their Active Adaptive Management process was part of a Crane Valley Dam project that won an Engineering News-Record “Award of Merit” in 2013.

By Jeff Gillies

A computer rendering shows the Folsom Dam with a completed auxiliary spillway.

A construction project is underway on a Northern California dam to bolster flood protection for the Sacramento region, an area federal agencies say is among the most at risk for flood damage in the United States. An engineering firm’s novel water quality monitoring strategy is helping to keep the operations on schedule while protecting the environment.

The Folsom Dam Auxiliary Spillway project is an approximately $900 million cooperative effort between the U.S. Army Corps of Engineers and the U.S. Department of the Interior’s Bureau of Reclamation that will help the Sacramento region achieve a 200-year level of flood protection. Work on the project on the American River includes a new spillway that will give operators a 200-year level of flood protection.

The Folsom dam, built in the 1950s, is part of the federal Central Valley Project, a water management plan that moves water for municipal and agricultural uses from northern California to drier regions of the state through a system of pumps, canals, reservoirs and other feats of engineering.

The Folsom dam, built in the 1950s, is part of the federal Central Valley Project, a water management plan that moves water for municipal and agricultural uses from northern California to drier regions of the state through a system of pumps, canals, reservoirs and other feats of engineering. The new spillway’s gates will sit 50 feet lower than those on the main dam, allowing flood-related drawdowns to begin earlier.

The firm is working on compliance issues for Kiewit Infrastructure West Co., the construction company contracted for the fourth phase of five phases of the spillway project.
Perched on Mount Werner in the Park Range of the Rocky Mountains, the Storm Peak Laboratory near Steamboat Springs, Colo., is accessible to scientists in the winter via a gondola trip and two ski lifts, with stints on skis in between.

Those who have heavy equipment to haul or don’t ski rely on snowmobiles or a snowcat. In the summer, it takes a ride up a rough Forest Service road in a high-clearance, four-wheel-drive vehicle.

Though the lab’s remote, mountain-top location can make getting there a task, it’s also part of what makes it “one the world’s premier high-elevation atmospheric science laboratories,” according to Gannet Hallar, Storm Peak’s director since 2006.

“It really allows us, we always say, to have our head in the clouds,” she said.

She means that literally. At 10,500 feet above sea level, the laboratory spends 35 percent of the winter inside the clouds—a great place to study their role in climate change.

Aerosol research is important because atmospheric particulate matter presents some of the greatest uncertainty when it comes to modeling and predicting future climate change. One dimension of that uncertainty is how aerosols interact with light in the atmosphere, Hallar said. While it’s understood that dark particles absorb light and heat the atmosphere while white particles reflect and cool it, data from the lab will quantify that effect to integrate it into climate models.

Storm Peak scientists are also researching the role aerosols play in cloud formation. Water in the atmosphere needs an aerosol particle to condense around to form a cloud droplet, Hallar said.

“If you have more particles, you’ll end up spreading that water amongst more particles, forming more, but smaller, cloud drops,” she said. “That makes for more reflective clouds.”

The lab investigates these and other issues with a lineup of monitoring equipment that includes an array of roof- and tower-mounted sensors measuring standard climatic variables like temperature, humidity, wind speed and direction, and solar radiation.

The instruments that really set the lab apart are the imaging probes, or “cloud probes.” The probes capture an image of every single snowflake that passes through it, measuring their size, shape and number. The probes normally rely on airplanes to carry them through clouds, but the lab’s spot in the sky allows them to run theirs on the roof.

“Storm Peak lab was the first place that ever did this on the ground,” Hallar said. “In an airplane, you can cover a lot of distance, but you move through clouds very quickly. So we end up collecting a larger quantity of data about clouds because we stay in one place for a long time.”

The lab also helped study the atmospheric effects produced by the mountain pine beetle infestations that have destroyed millions of acres of forests across the West. Their measurements found infested areas release significantly more volatile organic compounds, including a signature compound that mixes with ozone to produce aerosols. That can reduce visibility in the forest, though the cumulative effect of those aerosols in the atmosphere could be wider than that.

“Especially when you’re considering these infestations that cover millions upon millions of acres,” Hallar said. “Then it becomes more of a climate issue.”

The lab has seen a series of facility upgrades, including perhaps the most important addition in 2009 when the lab gained flushing toilets. Before that it was incineration toilets that process waste by burning it up. Hallar, who spends many nights there, said it was “life-changing.”

“And also science-changing,” she said. “There was a lot of concern that those incineration toilets were actually contaminating our samples.”
The year 2011 brought the most severe algal blooms that Lake Erie has ever experienced. Lake Erie's microcystis bloom was denser than in 2009, the previous record year. Of Erie's Western Basin were covered in blooms fostered from excessive phosphorus loading.

Algae toxins

The two most common types of toxins found in algal blooms are Microcystin and Anatoxin-A.

MICROCYSTIN-LR
- Type: Hepatoxin (affects liver)
- Symptoms: stomach cramps, vomiting, diarrhea, fever, headaches, weakness
- Algal Producers: Anabaena, Microcystis, Nostoc, Planktothrix
- Amount that can be ingested: 0.00003 mg/kg body weight per day

ANATOXIN-A
- Type: Neurotoxin (affects nervous system)
- Symptoms: lethargy, muscle aches, confusion, impaired memory
- Algal Producers: Anabaena, Aphanizomenon, Planktothrix
- Amount that can be ingested: 0.0005 mg/kg body weight per day

Information sourced from:
- Toxic Algae News toxicalgaenews.com
- National Wildlife Federation Feast and Famine in the Great Lakes ohp.epa.ohio.gov/AlgaeInformationforRecreationalWaters.aspx
- Ohio EPA Algae Information for Recreational Waters program etp.epa.ohio.gov/Habitats/algae.aspx
- TOXNET Toxicology Data Network toxnet.nlm.nih.gov
- All Graphics: Nate Christopher
The strong pull of the Kuroshio Current makes instrument deployment a challenge, as 50 million tons of water passes the southeast coast of Japan each second. “Divers had to be careful not to be swept away,” said Scott Gallager, Woods Hole Oceanographic Institution associate scientist and principal investigator for the newly installed OceanCube Observatory System.

Scientists from the United States and Japan built the observatory right in the middle of the powerful Kuroshio Current to monitor a 200,000 cubic meter volume of water. Data collected in the OceanCube will eventually be compared to another ocean observatory in the works down-current. “The design of the OceanCube is specific to understanding the flux of materials through a defined volume of water,” Gallager said.

The team from Woods Hole Oceanographic Institution, Okinawa Institute of Science and Technology Graduate University and Okinawa Churaumi Aquarium weathered the current and a pair of typhoons to install their new observatory off Japan’s Mabira Peninsula. It took three weeks and one diver was swept away. Luckily a fishing boat captain pulled him out down current.

OceanCube is the second iteration of an in-situ ocean observatory built to help researchers get a quantitative view of how carbon fluctuates through the ocean. The first undersea ocean observatory was built off a Panamanian island in the Pacific Ocean. The Kuroshio Current often carries cold upwelled water, which is rich in nutrients and low in oxygen and pH. Internal waves travel within the current, further straining the water and increasing production as it hits Japan’s narrow continental shelf.

Japan’s OceanCube is located in a biologically rich section of the Pacific. The site is thriving with a multitude of marine species, said Amber York, a WHOI research associate who works on the project. Sea turtles are particularly prolific there, along with a vast number of fish she is working to identify and catalogue in a species count.

Gallager said the thriving ecosystem, living amidst low pH and low oxygen upwelled water, means that organisms must have developed strategies for dealing with acidified water well before ocean acidification became an issue. That makes the site a natural ground to study marine life’s adaptability to ocean acidification.

Mast species of coral in the area are recovering from a widespread bleaching event that occurred in the 1980s. Gallager said the observatory will be there to watch coral recover. “As the coral begins to rebound and grow back, the communities of fish and benthic organisms will change also,” he said. “How the trajectory of these rebounding communities is impacted by climate change and ocean acidification is a major question we are addressing.”

Carbon enters the water column as carbon dioxide diffusing through the air-sea interface. The carbon is transformed into calcium carbonate, most of which the researchers presume ends up on the seafloor. They hope to measure calcium carbonate flux with the new seafloor observatory and use the figures to gain a better understanding of carbon cycling in the ocean.

The OceanCube monitors a volume of water that spans 100 meters per side by 20 meters deep. The observatory includes a variety of habitats, such as open water, rocky seafloor and coral reefs. Gallager said the researchers were careful to build the cube with a fixed volume in mind so they could calculate carbon concentrations and flux to the seafloor.

Temperature strings are used on the corners of the OceanCube. Acoustic Doppler current profilers at each corner measure wave amplitude, period and velocity. ADCPs also measure magnitude and direction of the current

At the center of the observatory, sensors measure the water’s chemical and biological properties, such as temperature, salinity, pressure, pCO2, pH, turbidity and chlorophyll. There are also sensors measuring organic and inorganic particulate in the water. Light sensors measure photosynthetically active radiation.

A special Continuous Plankton Imaging and Classification Sensor counts and classifies different species of plankton floating through the current. York said she is working on a similar setup for fish. “The next step is to develop automated machine vision classifiers to identify the fish automatically just as we do for the plankton. That will be a major advance in ocean observatories,” she said.

Two fixed stereo cameras and a pan and tilt camera, controlled from the OceanCube website, show sea life in real time around the observatory. “We can look at the biology that happens at the site and correlate it with environmental parameters we are measuring,” said York.

Data gathered by the OceanCube is logged in the Okinawa Churaumi Aquarium. Now that the observatory is up and running, researchers look forward to sharing data with the scientific community.

The third ocean observatory will be built down-current at Oshima Island, 100 kilometers south of Tokyo. The researchers will then compare the two sites and measure transport of biological and inorganic carbon.
In September 2013, historic flooding around Colorado’s Front Range west of Denver destroyed homes, washed out roads and closed Rocky Mountain National Park for weeks. The closures cut off rescue workers and food aid from hard-hit mountain towns and separated scientists from streams and lakes within the park where they regularly collect water samples for long-term studies of water chemistry.

Though U.S. Geological Survey scientists couldn’t make it to the Big Thompson River where it runs through the park for weeks, a network of in-stream sensors captured the creek’s response to the flood in a way that wouldn’t have been possible through grab samples alone, even if the scientists had been able to access it.

The sensors in the Big Thompson River and the Loch Vale basin in Rocky Mountain National Park are showing scientists how carbon moves through aquatic systems with unprecedented clarity.

“The sensors allow us to collect data at much higher frequency than we can usually do when we just go out and collect manual grab samples,” said David Clow, a USGS research hydrologist in Denver. “We use those in-situ sensors to obtain a high-definition picture of carbon transport in streams.”

Getting that picture is no idle scientific curiosity. In 2007, Congress passed the Energy Independence and Security Act, which directed the USGS to calculate fluxes of carbon coming from natural and managed landscapes across the country.

To do that right, hydrologists need to know how concentrations of various forms of carbon, such as dissolved organic carbon and carbon dioxide, change season-to-season and even hour-to-hour. They do that with sensor stations that produce measurements every 15 minutes. The USGS has had instruments in the Big Thompson and Loch Vale basin for two years, and the results are revealing for the first time how aquatic carbon responds to events like floods and daily cycles in drivers like solar radiation.

Take, for example, a station on the Big Thompson, which includes a water level sensor and a fluorometer measuring dissolved organic matter. By converting those measurements into estimates of discharge and dissolved organic carbon, the researchers can see that organic carbon concentrations ramped up in the spring of 2013 as snowmelt flushed the soil of what had accumulated through the winter. Organic carbon continued to spike whenever warming periods sent additional pulses of snowmelt into the stream and discharge rose. Later in the summer, the relationship wasn’t as strong, as dissolved organic carbon levels stayed consistent despite daily fluctuations in flows. But when the water levels rose with the floods of September, the carbon concentrations went up with them.

The sensors have also revealed daily variations in dissolved carbon dioxide. The data shows a clear pattern of CO₂ levels spiking at night and dropping during the day as the solar cycle shifts the balance between respiration and photosynthesis. Pairing the CO₂ data with solar radiation data from another sensor shows the relationship is more complicated than just night and day. On Aug. 20, for example, one of the region’s characteristic summertime afternoon storms blew in and solar radiation levels dropped. Sensor data show the CO₂ concentrations responded quickly with a quick bump as photosynthesis shut down.

In addition to events like floods and storms, the researchers are interested in the effects of the mountain pine beetle epidemic in the park. It’s killed off millions of acres of ponderosa pines, creating a rich supply of decaying organic matter that should wash into streams.

“A lot of our sites were installed to look at that specifically,” Clow said. “How does all the decaying organic matter change the fluxes of carbon in the streams?”

Clow, who has been conducting this kind of research for the past 20 years, said he’s only had the chance to work with these sensors for the past two years. They’re still relatively new and scientists are just scratching the surface of what they can do with them, he said. Meanwhile, they’ve been essential in capturing the variability that must be accounted for if the agency’s scientists are going to accurately calculate carbon fluxes.
Environmental Dashboard

A website and monitoring system helps an Ohio city understand how energy use and environmental quality affect the community

BY DANIEL KELLY

Most energy use is invisible, unless you’re looking for it.

John Petersen, professor of environmental studies and biology at Oberlin College, wants to make it possible for everyone to see how much water and electricity is needed to run towns, buildings and homes.

For the past 13 years, he’s developed technology that monitors and displays resource use. As he says, “the goal has been to engage, educate, motivate and empower a non-technical audience to change both thought and behavior in ways that benefit the environment.”

His most recent project brings this together in the Environmental Dashboard, a system and website that shows how energy and water use and environmental quality within Oberlin, Ohio - a small town 35 miles west of Cleveland - affects the community.

“syncs the dashboard with the many initiatives in this community that are in one way or another connected with the environment. The most recent effort looks to expand the dashboard to four area high schools.

For example, carbon dioxide emissions are displayed in parts per million and animated with a plume of smoke that gets broader if more is being emitted. Information on the building’s energy usage is portrayed in dollars — something that everyone understands. And if a building has been retrofitted to produce energy, say with solar panels, a meter dial swings to green showing energy is being produced and red when more energy is being consumed than generated.

“We’re very much trying to translate quantitative measurements of consumption and environmental quality into a form that is engaging and accessible to a non-technical public,” said Petersen. “We are concerned with translating data into something that is meaningful and motivational.”

But software can only go so far. The Environmental Dashboard is a useful tool in cyberspace, but physical objects help tell the energy story in buildings around Oberlin. Digital signs are another key component of this project. Students will see characters that appear on the dashboard and display different behaviors and different messages depending on resource use — are another key component of this project. Students will see Wally the walleye or Flash the energy squirrel cartoons depending on the animation,” said Kazloff. “The character is happy if consumption is low and sad if it’s high.”

There is a third component in addition to the city-wide dashboard and the building dashboards, says Petersen. It’s a forum designed to share the thoughts, ideas and actions of community members who are already moving the community forward on environmental sustainability.

“We want to use the technology to develop a pro-environmental attitude, to have people in the community understand how their own positive actions on the environment are part of a larger community-wide effort. We want them to feel like a connected part of a transition to greater environmental sustainability,” said Petersen.

Photo: Yvette Chin

WE ARE CONCERNED WITH TRANSLATING DATA INTO SOMETHING THAT IS MEANINGFUL AND MOTIVATIONAL.

John Petersen
Professor of environmental studies and biology at Oberlin College

Petersen shows off the dashboard during a municipal utility tour.

ENVIROMONITOR 37
The San Joaquin and Sacramento rivers converge in Northern California among a sprawling delta, a web of connecting channels that eventually flow into a system of bays and straits that form the open waters of the San Francisco Estuary. Those waters are the only home of the delta smelt, a small, silver fish that hatches in the delta, migrates to the estuary to mature and returns upstream to spawn and die.

“The smelt is a peculiar little fish,” said Bryan Downing, a research hydrologist with the U.S. Geological Survey in Sacramento. It’s also endangered, according to the state of California. And it’s among several other fish species in the San Francisco Estuary whose population numbers are in the midst of an unexpected decline that scientists have been tracking since the early 2000s.

Some hypotheses tie the smelt’s decline to intensive pumping operations that supply much of central and southern California with irrigation and drinking water. Scientists also question the status of the food web that supports this fish, but that subject is poorly understood, Downing said.

To get a better grasp on the food web and the nutrients that fuel it, the USGS is building an advanced monitoring network in the delta. Data from the network will give scientists a better understanding of the foundation of the food web while demonstrating the capabilities of a pioneering branch of sensor technology.

“Is it flow, is it nutrients or is it a combination of those things that are affecting the food web? We are starting a backbone of a nutrient monitoring network to get at those questions,” said John Franco Saraceno.

To get a better grasp on the food web and the nutrients that fuel it, the USGS is building an advanced monitoring network in the delta. Data from the network will give scientists a better understanding of the foundation of the food web while demonstrating the capabilities of a pioneering branch of sensor technology.

“Is it flow, is it nutrients or is it a combination of those things that are affecting the food web? We are starting a backbone of a nutrient monitoring network to get at those questions,” said John Franco Saraceno.

Today, the shallow reservoir is seen as a valuable rearing habitat for delta smelt and fish species. But scientists don’t know much about how it functions. Data from the monitoring station are helping to change that.

“Since installing this system, we’ve learned that Liberty Island can be a source and also a sink of nitrogen that can then be used by the food web downstream or upstream,” Saraceno said. “We actually see nitrogen retention in the summer as algae blooms.”

Downing says the data could eventually help construct computer models of how the system functions. The data could also serve as a guide for the estuary’s manual sampling programs, which remain important. Meanwhile, the USGS has received funding to expand the network further downstream into the estuary. Other research groups plan to install similar stations in the system.

“This is a first,” Downing said. “And it’s key to getting a better grip on what’s happening in the delta and just how the whole system works.”
YSI’s new Pro1020 dissolved oxygen and pH/ORP meter is a true field meter, combining military grade connectors, an IP67 waterproof and rubber-overmolded case and a 1-meter drop test to complete its rugged design. A large, backlit display and glow-in-the-dark keypad make the readings visible in any lighting condition. Choose from polarographic or galvanic dissolved oxygen sensors, as well as a pH or ORP sensor that best fits the water quality application. Cables are interchangeable and range in lengths from 1 to 30 meters to increase the instrument’s versatility. The unit stores 50 data sets in its memory with a number for later retrieval. The smart calibration function conveniently recalls the previous calibration values to simply walk through a step-by-step routine for re-calibration.

Proactive Mega-Monsoon XL

Capable of pumping fluids from 180 feet below the ground, the Proactive Mega-Monsoon XL is a reliable solution for continuous sampling or purging of groundwater wells. The replaceable motor module, motor housing top connector and the outside pump housing are all made of robust stainless steel parts. To power the unit, simply connect the pump to a Low Flow with Power Booster 3 XL LCD Controller and a 12 VDC battery. The LCD screen on top of the power booster displays and easily adjusts the discharge rate. With the addition of a low flow control valve, the pump can sample as low as 10 milliliters per minute from any depth.

OTT Parsivel2

The OTT Parsivel2 is a laser-based optical system for complete and reliable measurements of precipitation. It captures both the size and speed of falling particles, sorting them into one of 32 separate size and velocity classes. Measurement intervals range from 10 seconds to 1 hour, offsetting the fast signal processor that calculates measurement data to determine the precipitation characteristics. Data are transferred to a data logger, automatic weather station or PC. The Parsivel2 is virtually maintenance-free and features a USB interface for simple setup and programming.

In-Situ Level TROLL 400

The In-Situ Level TROLL 400 is a self-contained absolute water level logger designed for unattended monitoring in freshwater, saltwater and contaminated waters. Sealed in a solid titanium housing, the logger is either suspended from a backshell hanger or secured to a direct-read cable with a twist-lock mechanism that ensures connections are not compromised. An internal memory records up to 130,000 data sets which easily export to a PC for further analysis. Standard communication protocols include Modbus, 4-20mA, SDI-12 and RS-485/232.

Solinst Model 122

Determination of both light and dense non-aqueous phase liquids is quick and easy with the redesigned Solinst Model 122 oil/water meter. Factory-sealed and pressure proof up to 500 psi, the P8 probe is 5/8 inches in diameter and made of robust stainless steel. It can fit through tight spaces and into narrow wells. The laser-marked tape is available in lengths of 100 to 1,000 feet, or from 30 to 300 meters. Markings on the 3/8-inch PVDF flat tape are traceable to NIST and EU measurement standards. All Solinst Model 122 meters have been approved for use in explosive environments.

Juniper Systems Archer 2

Built with a sleek and ergonomic design, the Archer 2 rugged handheld computer is packed full of features. Running a Microsoft Windows embedded software and a speedy 1.0 GHz processor, the handheld boasts productivity for professionals working in the field. The geotagging function marks a time stamp and GPS coordinates on a photo to keep track of the exact location where it was taken. Comprised of 512 MB of RAM and 8 gigabytes of flash storage, the memory provides plenty of room to store documents and images. Communication capabilities are enhanced via Bluetooth and Wi-Fi wireless technology. Additional options include a built-in barcode scanner, 3.75G GSM cell modem, 5 megapixel camera and a GPS receiver.

The rugged handheld computer produces a crisp image on its extra-large, sunlight readable display. An extensive battery life of 20 hours powers the unit through every work day. Carrying an IP68 rating and tested to MIL-STD-810G standards for water, humidity, sand, dust, vibration, altitude, shock and temperature, the Archer 2 is a reliable data-collecting machine.

Determination of both light and dense non-aqueous phase liquids is quick and easy with the redesigned Solinst Model 122 oil/water meter. Factory-sealed and pressure proof up to 500 psi, the P8 probe is 5/8 inches in diameter and made of robust stainless steel. It can fit through tight spaces and into narrow wells. The laser-marked tape is available in lengths of 100 to 1,000 feet, or from 30 to 300 meters. Markings on the 3/8-inch PVDF flat tape are traceable to NIST and EU measurement standards. All Solinst Model 122 meters have been approved for use in explosive environments.

Solinst Model 122

Determination of both light and dense non-aqueous phase liquids is quick and easy with the redesigned Solinst Model 122 oil/water meter. Factory-sealed and pressure proof up to 500 ps, the P8 probe is 5/8 inches in diameter and made of robust stainless steel. It can fit through tight spaces and into narrow wells. The laser-marked tape is available in lengths of 100 to 1,000 feet, or from 30 to 300 meters. Markings on the 3/8-inch PVDF flat tape are traceable to NIST and EU measurement standards. All Solinst Model 122 meters have been approved for use in explosive environments.

YSI’s new Pro1020 dissolved oxygen and pH/ORP meter is a true field meter, combining military grade connectors, an IP67 waterproof and rubber-overmolded case and a 1-meter drop test to complete its rugged design. A large, backlit display and glow-in-the-dark keypad make the readings visible in any lighting condition. Choose from polarographic or galvanic dissolved oxygen sensors, as well as a pH or ORP sensor that best fits the water quality application. Cables are interchangeable and range in lengths from 1 to 30 meters to increase the instrument’s versatility. The unit stores 50 data sets in its memory with a number for later retrieval. The smart calibration function conveniently recalls the previous calibration values to simply walk through a step-by-step routine for re-calibration.

OTT Parsivel2

The OTT Parsivel2 is a laser-based optical system for complete and reliable measurements of precipitation. It captures both the size and speed of falling particles, sorting them into one of 32 separate size and velocity classes. Measurement intervals range from 10 seconds to 1 hour, offsetting the fast signal processor that calculates measurement data to determine the precipitation characteristics. Data are transferred to a data logger, automatic weather station or PC. The Parsivel2 is virtually maintenance-free and features a USB interface for simple setup and programming.

In-Situ Level TROLL 400

The In-Situ Level TROLL 400 is a self-contained absolute water level logger designed for unattended monitoring in freshwater, saltwater and contaminated waters. Sealed in a solid titanium housing, the logger is either suspended from a backshell hanger or secured to a direct-read cable with a twist-lock mechanism that ensures connections are not compromised. An internal memory records up to 130,000 data sets which easily export to a PC for further analysis. Standard communication protocols include Modbus, 4-20mA, SDI-12 and RS-485/232.

Solinst Model 122

Determination of both light and dense non-aqueous phase liquids is quick and easy with the redesigned Solinst Model 122 oil/water meter. Factory-sealed and pressure proof up to 500 psi, the P8 probe is 5/8 inches in diameter and made of robust stainless steel. It can fit through tight spaces and into narrow wells. The laser-marked tape is available in lengths of 100 to 1,000 feet, or from 30 to 300 meters. Markings on the 3/8-inch PVDF flat tape are traceable to NIST and EU measurement standards. All Solinst Model 122 meters have been approved for use in explosive environments.

YSI’s new Pro1020 dissolved oxygen and pH/ORP meter is a true field meter, combining military grade connectors, an IP67 waterproof and rubber-overmolded case and a 1-meter drop test to complete its rugged design. A large, backlit display and glow-in-the-dark keypad make the readings visible in any lighting condition. Choose from polarographic or galvanic dissolved oxygen sensors, as well as a pH or ORP sensor that best fits the water quality application. Cables are interchangeable and range in lengths from 1 to 30 meters to increase the instrument’s versatility. The unit stores 50 data sets in its memory with a number for later retrieval. The smart calibration function conveniently recalls the previous calibration values to simply walk through a step-by-step routine for re-calibration.

OTT Parsivel2

The OTT Parsivel2 is a laser-based optical system for complete and reliable measurements of precipitation. It captures both the size and speed of falling particles, sorting them into one of 32 separate size and velocity classes. Measurement intervals range from 10 seconds to 1 hour, offsetting the fast signal processor that calculates measurement data to determine the precipitation characteristics. Data are transferred to a data logger, automatic weather station or PC. The Parsivel2 is virtually maintenance-free and features a USB interface for simple setup and programming.

In-Situ Level TROLL 400

The In-Situ Level TROLL 400 is a self-contained absolute water level logger designed for unattended monitoring in freshwater, saltwater and contaminated waters. Sealed in a solid titanium housing, the logger is either suspended from a backshell hanger or secured to a direct-read cable with a twist-lock mechanism that ensures connections are not compromised. An internal memory records up to 130,000 data sets which easily export to a PC for further analysis. Standard communication protocols include Modbus, 4-20mA, SDI-12 and RS-485/232.

Solinst Model 122

Determination of both light and dense non-aqueous phase liquids is quick and easy with the redesigned Solinst Model 122 oil/water meter. Factory-sealed and pressure proof up to 500 psi, the P8 probe is 5/8 inches in diameter and made of robust stainless steel. It can fit through tight spaces and into narrow wells. The laser-marked tape is available in lengths of 100 to 1,000 feet, or from 30 to 300 meters. Markings on the 3/8-inch PVDF flat tape are traceable to NIST and EU measurement standards. All Solinst Model 122 meters have been approved for use in explosive environments.
The extensive irrigation canals across Colorado that have made agriculture possible in dry parts of the state have also disrupted natural hydrology, drying up natural aquatic habitats like floodplain wetlands.

But in a surprising twist, a recently published study shows that the irrigation canals that carry water away from rivers are also creating and sustaining functional wetlands in areas that wouldn’t otherwise support them.

“We’ve pretty much dried up a lot of our historic riparian wetlands (with irrigation), but what our research found was it created wetlands in places where you certainly wouldn’t expect wetlands to be,” said Jeremy Sueltenfuss, a wetland ecologist with the Colorado Natural Heritage Program and lead author of the study.

Documenting this connection is especially important in Colorado, where wetlands make up just 2 percent of the state’s landscape but support 90 percent of the state’s species at some point in their lifecycle. The findings could help ease conflicts between urban environmentalists and rural farmers over how much water ought to remain in the state’s streams or be diverted for irrigation.

Though the diversions are unpopular with conservationists, some are the sole water supply to wetlands that appear to be as old as the canals themselves.

“In the particular area we worked in, that goes back to 1890. So they’re over 100 years old,” Sueltenfuss said. “If you stopped running the water, those wetlands are dry.”

The researchers also conducted stable isotope analysis and found that the chemical signatures of the water of each wetland and its adjacent canal were generally identical.

The results of the study, published in the journal Wetlands, could lead to a new approach to wetland conservation in the state, Sueltenfuss said.

Urban environmentalists are often at odds with the agricultural sector, which they see as an outsized drain on the region’s scarce water supply that ought to leave more water in the rivers. But these findings suggest that there might be important overlap in the seemingly conflicting goals of environmentalists and agriculturalists, one seeking to conserve important aquatic habitats and the other to divert water for crops and cattle.

“The most exciting piece of it is this novel way to approach wetland conservation in terms of getting people from both cities and agriculture at the same table and having a conversation,” Sueltenfuss said.

Across the 20 study sites, the researchers dug 70 1-meter monitoring wells where they measured water levels every two weeks from May to November. Six wetlands each had one well equipped with an In-Situ Rugged TROLL 100 water level logger that measured the water table hourly.

Wetlands fed by groundwater typically have stable water tables, Sueltenfuss said. But the water tables they measured showed clear fluctuations that correlated with the canal flow data. When the irrigation was flowing, the water table would rise near the surface and recharge the wetland. When irrigators stanched the flow, the table would drop.

“Matching up water table position over time with canal flow over time, you could see how they overlapped really nicely,” he said. “Much more clearly than I would have expected.”

After irrigation canal flows dropped, water tables at nearby wetlands fell at a similar rate after a month or two of lag time.
A federal lab is partnering with the Chicago sewer district to model and study the microbes of the Chicago River to detect benefits of infrastructure upgrades.

BY ANDY McGlashen.

The MWRD conducts regular sampling on the river.

“Chicago has this history as the meat packing capital of the U.S., and there actually was an area of the river called Bubbly Creek, because that’s where all the carcasses and offal were thrown in the river,” she said. “It was bubbly because of the gases from decomposing waste. So there has to be some microbial activity over there.”

The seven-year study will show what happens to the microbial community as disinfection begins and reservoirs are completed. But wastewater isn’t the only source of microbes in the river, Negri noted.

Argonne scientists are tapping into sampling the district already does through its ambient water quality monitoring program. MWRD scientists use surface grab sampling at 28 sites on 13 waterways and analyze the water not only for fecal indicator bacteria, but also for alkalinity, turbidity, dissolved metals, fats, radiochemistry and several other parameters.

Chicago is the only major U.S. city that does not disinfect the effluent from its wastewater treatment plants to kill germs. The prevailing logic was that no one would want to have contact with the heavily polluted river anyway.

But in 2011 the U.S. Environmental Protection Agency ordered that portions of the Chicago River and connected waterways be made safe for swimming. To meet the new requirements, MWRD will begin disinfection at two of its treatment plants by 2016. The city also is in the midst of the so-called Deep Tunnel project, a decades-long effort to capture stormwater in tunnels and reservoirs to reduce flooding and combined sewer overflows.

The project’s primary goal is measuring the success of MWRD’s upgrades, it’s also a chance to seek answers to fundamental questions about how microbes interact in the environment, Gilbert said.

“The most interesting thing from my perspective is that when a pathogen enters a natural ecosystem, it finds itself interacting with new organisms it’s never encountered before,” he said. “It tries itself in this light, cold and totally aerobic environment. If that doesn’t kill it, it has the opportunity to start competing against these natural bacteria. We want to know what that interaction does to those organisms. Do they become more pathogenic? Less pathogenic? Shockingly, we know very little about that, primarily because we haven’t had the tools to do it.”

If it may have taken Chicago officials a long time to see their waterways as much more than channels for moving ships and waste, but Gilbert said MWRD’s partnership with Argonne is evidence that the city is awakening to the Chicago River’s potential as a recreation asset.

“It’s remarkable to see a public body taking such a far-sighted perspective of their system,” he said. “They’re investing in the future by allowing us to investigate this microbial world. Nowhere else in the world is this being done.”
Environmental Measurements: Lessons Online

BY CHRISTINE DEMPSEY

For those interested in the principles behind environmental measurements, whether it be for water, air or soil, there is now a comprehensive online knowledge base: the Fundamentals of Environmental Measurements reference.

This online resource is designed for anyone who wants to know more about the what, why and how of studying the different elements that define environmental quality. The comprehensive library explains the science of a variety of environmental monitoring parameters while addressing the technology, methods and equipment used to study and measure them.

The Fundamentals of Environmental Measurements website is broken up into three categories: Parameters, Methods and Equipment, and Applications.

The first section explores the science behind environmental quality parameters in water, air and soil. Whether a project is measuring dissolved oxygen levels, conductivity, wind speed or temperature, this online resource has all the details.

Temperature is an important factor to consider when assessing water quality. In addition to its own effects, temperature influences several other water quality parameters and can alter the physical and chemical properties of water. In this regard, water temperature should be accounted for when determining:

- Metabolic rates and photosynthesis production
- Compound toxicity
- Dissolved oxygen and other dissolved gas concentrations
- Conductivity and salinity
- pH
- Water density

pH affects aquatic life by causing physiological effects, reducing CaCO₃ levels (needed for coral and shells) as well as increasing the solubility of toxic compounds. The majority of fish prefer a pH range of 6.5-9.0, though there are some unique exceptions. Angel fish and discus from the Amazon River Basin live happily in waters with a pH as low as 5.0. The Osorezan dace thrives in the acidic waters of Lake Osorezan, resting comfortably at a pH of 3.5, swimming into neutral pH waters only to spawn. On the opposite end of the spectrum, some african cichlids enjoy pH levels around 9.5 and alkaline tilapia flourish in Lake Natron, where pH levels reach 10.5.

Dissolved Oxygen Requirements

It goes without saying that most aquatic life needs oxygen to live. As dissolved oxygen levels vary between bodies of water, different species have adapted to different DO requirements.

Coldwater fish like trout and salmon are most affected by low dissolved oxygen concentrations and cannot tolerate them. Northern pike are among the most resilient, surviving at 1.5 mg/L DO for extended periods.

Most saltwater species have a higher tolerance for low DO levels than their freshwater counterparts. This is because saltwater cannot hold as much oxygen as freshwater, in general, dissolved oxygen levels are about 20 percent less in seawater than in freshwater at the same temperature.

This does not mean that saltwater fish can live without dissolved oxygen completely. Many tropical saltwater fish require higher levels of DO, such as those surrounding coral reefs. However, benthic dwellers, such as halibut, can tolerate levels around 1 mg/L DO.

An optical sensor consists of a semi-permeable membrane, luminous dye, LED and photodetector. As oxygen crosses the membrane, it interacts with the dye, limiting the luminescence produced. The altered luminescence is measured by a photodetector, and can be used to calculate the dissolved oxygen concentration. Some sensors include a red LED that does not cause luminescence as a reference.

Optical Dissolved Oxygen Sensors

Optical DO sensors measure the interaction between oxygen and certain luminous dyes. When exposed to blue light, these dyes become excited and emit light. If dissolved oxygen is present, it can limit the intensity and lifetime of the luminescence. The measured effect is inversely proportional to the partial pressure of oxygen.

Water Temperature

Temperature is an important factor to consider when assessing water quality. In addition to its own effects, temperature influences several other water quality parameters and can alter the physical and chemical properties of water. In this regard, water temperature should be accounted for when determining:

- Metabolic rates and photosynthesis production
- Compound toxicity
- Dissolved oxygen and other dissolved gas concentrations
- Conductivity and salinity
- pH
- Water density

To learn more and receive parameter specific-discounts, visit www.fondriest.com/environmental-measurements.
An array of thermistor strings that span the entire water column at several sites across Lake Superior is giving scientists new insight into the thermal structure of the lake, especially during the winter. A recent analysis by University of Minnesota researchers of temperature data from 2005-2012 shows that the strength of stratification varies from year to year and from site to site. The data also show the effects of ice cover. In 2009, a particularly icy winter, the ice cover trapped heat in the lake, warming the water column and resulting in weaker stratification. In the ice-free winter of 2012, stratification was much stronger.

More than ten years of sampling at offshore stations in southeastern Lake Michigan before and after the invasion of quagga mussels has shown a significant change in summer chlorophyll-a dynamics, according to a study from the National Oceanic and Atmospheric Administration and the Great Lakes Research Center. Among recently published findings is average chlorophyll-a concentration across the water column in early summer has decreased by 50 percent between 1995-2000 and 2007-2011. The researchers attributed the changes to the mussels, which trap nutrients in nearshore regions and cut off the supply for offshore blooms.

Lake Huron’s population of alewife — once an important prey fish for the lake’s Chinook salmon — collapsed in 2003. They haven’t recovered and Lake Huron’s ecosystem has since undergone a significant shift. An analysis from Ontario Ministry of Natural Resources and U.S. Geological Survey scientists of long-term climate data suggest that the harsh winter of 2003 likely contributed to the collapse. It was among the coldest years on record from 1973 and 2009, and supported the most extensive March ice cover.

Though that winter contributed to the decline, it doesn’t explain why the alewife haven’t bounced back. That’s more likely the result of a lower abundance of their preferred prey organisms.

The Charity Shoal structure on the bed of northeast Lake Ontario is a 1.5-kilometer-diameter depression surrounded by an elevated rim. Since its discovery in 1999, scientists have suspected it was a meteorite impact site but couldn’t quite prove it. Marine magnetic surveys, seismic profiles and modeling conducted in 2012 took a first look at its subsurface structure, and the recently published results further suggest that the structure is an impact crater and not a volcanic intrusion or sinkhole. However, scientists won’t know for certain until they drill into the sediment and bedrock for samples.

A “robust community” of freshwater mussels was discovered in Lake Erie within a thermal plume created by power plant discharge on the shores of Oregon, Ohio. That’s good news in the Great Lakes, where freshwater mussels are on the decline as a result of habitat loss and biofouling from invasive zebra and quagga mussels. A recent study from the University of Toledo found that the community within the plume was more diverse, denser and had larger mussels than others around the lake.

As New Mexico snowpack shrinks, high-salinity groundwater bubbling up through faults looms as a water quality issue

BY JEFF GILLIES

Climate projections for the Southwest United States say the region should expect diminished snowpack. That’s a concern for water managers as they prepare to supply a growing population with shrinking water resources. But scientists in New Mexico are hoping to learn more about what it could mean for water quality.

Melting snow contributes to the region’s surface water flows, but so does deep groundwater bubbling up through faults. That groundwater can be low in oxygen and high in salinity and trace metals.

“In the arid Southwest, where we have things like relatively young volcanos and geothermal systems, you have the opportunity for waters to come from the subsurface and to mix with the surface water systems,” said Laura Crossey, professor in the Department of Earth and Planetary Sciences at the University of New Mexico.

“It’s not rocket science to say as we look into a future scenario where we might have less and less snowpack, then we’ll see years where the water is more saline and has these other constituents in it on a more frequent basis than it does today.”

To get a clearer picture of just how saline and metal-tainted the water might become, Crossey and her colleagues are monitoring water quality in streams and springs in a fault-crossed region of New Mexico.

By measuring ongoing variation in salinity and other chemical parameters in these waters and relating that to discharge, Crossey said they’ll be able to forecast water quality changes under various climate scenarios.

“That’s kind of where we’re trying to head: finding ways that we can use monitoring to couple hydrochemical parameters to hydrologic parameters and then be able to work better with managers to think about water quality, not just water quantity,” she said.

The group’s study sites include streams on the Valles Caldera, a volcano that most recently erupted over a million years ago. That makes it a relatively young feature with active geothermal systems, Crossey said. Water sneaks up through those systems and enters streams as they cross faults, diminishing the surface water quality as it heads down the slope.

South of the caldera, Crossey and master’s student Chris McGibbon have installed conductivity, temperature and depth sensors in a series of springs rising from the Nacimiento Fault. Data from this site give a clean look at water coming up from the fault before it mixes with surface water. The sensors are also giving researchers their first chance to understand what’s driving slow changes in the water quality there. So far, they’ve detected slight seasonal temperature variations of 1 or 2 degrees Celsius. They’ve also seen more frequent salinity variations.

“There are many reasons that temperature might change. There are many reasons that conductance might change,” Crossey said. “And if we monitor both of them, we can sometimes attribute how much of the change is from one process and how much is from another.”

By advocating for this kind of monitoring, Crossey is hoping to emphasize the importance of water quality as managers begin to cope with approaching climate-driven water supply issues. Meanwhile, as part of the university system that works with students, she’s also helping to train the next generation of environmental scientists to work with the sensors and high-resolution datasets that are becoming increasingly important in this kind of research.

“We’re feeling the crunch of the new things that we need to be teaching students so that when they go out they’re able to have the skills to take advantage of this monitoring,” she said.
Jeanette Schnars is the executive director of the Regional Science Consortium, a collaborative non-profit based in Presque Isle, Penn., that coordinates educational and research projects for Lake Erie and the Ohio River Basin. The Consortium’s members include colleges and universities, state and federal agencies, K-12 school districts and other non-profits. They work out of the Tom Ridge Environmental Center located at the gateway to Presque Isle State Park. Schnars spoke to us about the consortium’s mission and its water quality buoys.

EM: How does the Regional Science Consortium’s coordinating role help improve research in the area?

JS: We can put together a project and bring together researchers that might not normally interact. For one of our projects, we brought in a microbiologist from one university and a statistician from another university and a statistician and another researcher from USGS. When research projects come up I usually have the ability to really bring scientists together to make a very strong team.

EM: Have you used data buoys in research applications in past?

JS: We do a lot of research on bacterial concentrations in the swimming water of our beaches. One of our projects is working to find more rapid techniques. How can we figure out the concentration more quickly? To do that, we operate two weather stations and two smaller buoys looking at only water quality parameters like temperature, pH, turbidity, dissolved oxygen and conductivity. We use that information to run several different predictive models.

EM: You’re planning to deploy another buoy this spring. What will that add to your data collecting capabilities?

JS: This buoy we’re looking at deploying in May is going to be a much larger buoy that will have the full weather station, a video camera, water quality parameters, as well as the wave sensor on it. So we’ll have wave height, wave period and wave direction, which everybody is pretty excited about. This buoy will be feeding information into the predictive models for bacterial levels at swimming beaches. We’re also working with members of the Consortium to integrate the data into their studies with fisheries, algal blooms and climate change.

EM: How will non-scientists benefit from the new buoy?

JS: A lot of people recreate on the water here. It’s definitely an attraction. Many people from out of town visit, and sometimes when the weather is questionable they will still go out in unsafe conditions. We’re hoping that this new buoy system will provide additional information on the water conditions on the nearshore Pennsylvania waters of Lake Erie and prevent anyone from being on the Lake during hazardous weather.

The data will be fed to our website, to the Great Lakes Observing system’s website and NOAA’s National Data Buoy Center. From there the information goes to the National Weather Service. Now, when the NWS reports the nearshore forecast for the Pennsylvania waters of Lake Erie, they will be using actual data that is coming from the new buoy system instead of predicting conditions like they do now. The NWS will provide the buoy information on their website, through the NOAA weather radio, and through their Dial-A-Buoy program where you can actually dial a phone number and get the information as well.

In addition to the weather station, wave sensor and water quality sensors, there will also be a video camera mounted on the buoy system taking 30-second clips of water conditions and updating to the website every hour. We wanted people to get visuals of what the conditions look like and how the waves are moving, so this will be important.

EM: Have you heard from people in the community looking forward to this kind of data?

JS: We’ve had a tremendous amount of community support for this project. People are very excited, and not just in Erie County. We get a lot of visitors from throughout the region and everybody has really wanted this for several years. So there will be a lot of excitement that this buoy system will be deployed off of Pennsylvania waters of Lake Erie in our area.

EM: How does the Regional Science Consortium’s mission and its water quality buoys.

Jeanette Schnars
Talking about buoys in Pennsylvania’s Lake Erie waters

The NexSens Technology TS210 thermistor string is the next evolution of the TS line. Featuring rugged integral construction, the TS210 is designed to measure vertical temperature profiles in the Great Lakes, coastal waters and other extreme environments.

Ts210 strings combine the reliability of NexSens thermistor electronics with an array of new improvements, including reinforced cable design, exposed sensor configuration and an innovative clamp system.

“We now have a marine-grade cable that we use for the TS210,” said Paul Nieberding, general manager of Fondriest Environmental, Inc., the master distributor for NexSens Technology in the United States. “It has a braided Kevlar core that adds an extra layer of strength to the cable.”

A new clamping system attaches the load-bearing steel line to the communication cable directly, rather than connecting to the sensor as in other past models. “The sensor is the main potential leak point,” Nieberding said. “The new clamp takes more stress off of the sensor itself.”

Additionally, the TS210’s integral construction contributes to its durability. While modular thermistor systems such as the NexSens T-Node FR provide flexibility, their connectors can stress or bend over time, particularly in turbulent aquatic environments. Integrating the thermistor segment with the communication line ensures that the TS210 can gather data with minimized risk of damage in wave zones. While thermistor strings are often limited to relatively short lengths, the TS210 can be custom-built up to 1,219 meters (4,000 feet) with 250 nodes. Precise spacing of individual nodes is also up to the customer’s discretion.

A standard configuration will also be available, said Doug Nguyen, chief engineer for NexSens Technology.

“Another option we have is a prebuilt section — 10 nodes, 10 meters, with one node per meter.” Nguyen said. “Users could combine two or three of these sections into 20- or 30-meter chains.”

As with the T-Node FR strings, the TS210 features exposed thermistors that make direct contact with water. This adds a serious boost to performance. Nguyen said. “Instead of taking 10 minutes to stabilize, it can take a measurement within a minute.”

The TS210 uses industry-standard IT485 Modbus RTU output to interface with data loggers from NexSens and many other manufacturers. The sensor nodes require no calibration and only periodic cleaning and inspection.

A power requirement of 4-28 VDC allows the TS210 to run on a 12 or 24 volt power supply depending on the application. Each node has a relatively low power draw of 1.5 mA when active and 0.35 mA when in sleep mode.

\textit{Temperature String Evolved}

NexSens’ new rugged thermistor strings can hang in any environment.

\textbf{BY ALEX CARD}

The NexSens Technology TS210 thermistor string is the next evolution of the TS line. Featuring rugged integral construction, the TS210 is designed to measure vertical temperature profiles in the Great Lakes, coastal waters and other extreme environments.

Ts210 strings combine the reliability of NexSens thermistor electronics with an array of new improvements, including reinforced cable design, exposed sensor configuration and an innovative clamp system.

“We now have a marine-grade cable that we use for the TS210,” said Paul Nieberding, general manager of Fondriest Environmental, Inc., the master distributor for NexSens Technology in the United States. “It has a braided Kevlar core that adds an extra layer of strength to the cable.”

A new clamping system attaches the load-bearing steel line to the communication cable directly, rather than connecting to the sensor as in other past models. “The sensor is the main potential leak point,” Nieberding said. “The new clamp takes more stress off of the sensor itself.”

Additionally, the TS210’s integral construction contributes to its durability. While modular thermistor systems such as the NexSens T-Node FR provide flexibility, their connectors can stress or bend over time, particularly in turbulent aquatic environments. Integrating the thermistor segment with the communication line ensures that the TS210 can gather data with minimized risk of damage in wave zones. While thermistor strings are often limited to relatively short lengths, the TS210 can be custom-built up to 1,219 meters (4,000 feet) with 250 nodes. Precise spacing of individual nodes is also up to the customer’s discretion.

A standard configuration will also be available, said Doug Nguyen, chief engineer for NexSens Technology.

“Another option we have is a prebuilt section — 10 nodes, 10 meters, with one node per meter.” Nguyen said. “Users could combine two or three of these sections into 20- or 30-meter chains.”

As with the T-Node FR strings, the TS210 features exposed thermistors that make direct contact with water. This adds a serious boost to performance. Nguyen said. “Instead of taking 10 minutes to stabilize, it can take a measurement within a minute.”

The TS210 uses industry-standard IT485 Modbus RTU output to interface with data loggers from NexSens and many other manufacturers. The sensor nodes require no calibration and only periodic cleaning and inspection.

A power requirement of 4-28 VDC allows the TS210 to run on a 12 or 24 volt power supply depending on the application. Each node has a relatively low power draw of 1.5 mA when active and 0.35 mA when in sleep mode.
Air-Deployed Temperature Buys

In July and August, NASA's Marginal Ice Zone Observations and Processes Experiment brought scientists to Alaska's North Slope to study a region at annual ice freeze-and-thaw that is poorly understood.

The campaign gave scientists a chance to test two UAV-based instruments developed at the University of Colorado, Boulder that could help address those issues. One was the Air-Deployed MicroBuoy, a small buoy that supports a short string of temperature sensors designed to be launched from an unmanned aircraft.

"The whole package consists of a little battery, a microcontroller, a GPS and a little radio," said Scott Paxo, who developed the buoy along with Dale Lawrence, both professors in the Aerospace Engineering Sciences Department at CU-Boulder. "And it fits into a physical package slightly larger than a roll of quarters."

During the campaign, the researchers deployed the buoys from ScanEagle UAVs operated by the University of Alaska, Fairbanks.

The researchers also tested the CU-Boulder-developed Self Deployed Surface Sonde, which consists of similar sensor equipment loaded into a small foam aircraft that can fly upwards of 20 kilometers offshore before landing and unfurling its 10-meter temperature string. Though this instrument’s limited battery capacity can’t carry its 18-inch wingspan as far offshore as a larger AUV with a micro buoy payload, it can achieve a more accurate placement than a buoy dropped from altitude.

In-Plant Moisture Sensor

Soil probes are commonly used in agriculture to measure soil moisture. But as it turns out, soil moisture sensors on the market today may not be ideal for all plants, especially ones with dense, meandering root systems like grape vines.

Using a standard soil probe only gives a moisture reading for a small section of soil, about the size of a baseball. That’s a good sample, said Alan Lakso, professor of horticulture at Cornell University. But it’s far from comprehensive. Researchers at the university say they’ve developed a better sensor, one that’s as small as a fingernail and easily implanted into growing vegetation.

The sensor is constructed of two thin sheets of silicon on one side that bond with a layer of glass. In between the two halves is a small water-filled cavity encased by a porous membrane that exchanges moisture with its surroundings to maintain pressure balance, which is converted into a moisture measurement.

Not much power is required for the sensors, and they shouldn’t cost much either. If a reliable mass-production method can be established, Lakso says the price for each might be around $5.

“What an orchard or vineyard, one sensor gives you a very small sample. But if you could afford 10 to put in the same area,” said Lakso. “It’s much more inexpensive for researchers and hydrologists to take measurements, and lots of them.”

New pH Sensor for Ocean Acidity

A new generation of small, low-cost sensors for long-term monitoring of the pH of seawater is within reach, British researchers report.

Ocean acidification requires long-term monitoring, so researchers need instruments that can be deployed in remote areas and take repeated measurements over long periods. Most devices for in-situ pH measurements use electrodes, which are incapable of the precision needed to study ocean acidification, said Victoire Rérolle, a postdoctoral researcher at the National Oceanography Centre in Southampton, England.

“The more promising technology is spectrophotometry, but there is no off-the-shelf instrument currently available for that,” Rérolle said. She and colleagues say they’ve made significant progress in addressing that challenge.

The micro sensor they developed took accurate measurements during more than a month aboard a research vessel, they report in the journal Analytica Chimica Acta.

The tool uses an indicator dye that changes color as pH changes — not unlike the litmus strips familiar to high school chemistry students — contained in a microfluidic chip. It also uses a spectrophotometer to measure light from an LED as it passes through the dyed water. Pumps and valves control the water sample.

The tool requires few inputs, so it could be deployed for a long time without maintenance. For example, it used less than 30 milliliters of dye during the test deployment.

CubeSensors

A small startup from Slovenia wants to build healthier households by making atmospheric monitoring technology accessible to homeowners.

The CubeSensor differentiates itself from other household monitoring products by reading air quality through the detection of volatile organic compounds. This method produces accurate measurements that are unaffected by ventilation systems.

“We all have weather apps on our phones, but we know very little about what’s going on in places where we spend an average 90 percent of our lives — our homes and offices,” said Alja Isakovic of CubeSensors’ outreach. “We decided it was time to find out how healthy the air we breathe is, and how little changes in our environment affect how we feel.”

The device offers practical advice tailored to home and office through its web app. Shaking the CubeSensor gives instant air quality feedback: If the Cube glows blue, indoor atmospheric quality is good. If the Cube glows red, users know to consult the app for further recommendations.
Across
1. Your source for precision temperature sensors and strings
4. Le Chatelier’s principle explains why _____ decreases as temperature increases
5. Dissolved _____ is less soluble in warm water than in cold water
6. The vertical cycling of warmer and cooler water in the ocean
8. Water temperature can affect ionic mobility and concentration, increasing _____
9. Temperature measures the average thermal _____ of a substance
11. The greatest source of heat transfer to lake water
12. Water freezes at lower temperatures under higher _____

Down
2. The thermal division in a lake
3. Cold water temperatures can inhibit _____ in plants
7. Salmonoids are particularly sensitive to an _____ in water temperature
10. Water is most _____ at 4 degrees Celsius

Visit fondriest.com/news/crossword-puzzles to find more puzzles and answers!
SRBC Remote Water Quality Monitoring Network

Read the full story in the next edition