Used Global Water WQ301 Conductivity Sensor

Global Water's WQ301 conductivity sensor is a rugged and reliable water conductivity measuring device.

Features

  • Measure conductivity at any depth
  • Fully encapsulated electronics in stainless steel housing
  • 4-20 mA output
Your Price $391.00
In Stock
Global Water
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Used Global Water WQ301 Conductivity SensorWQ301-R Used WQ301B conductivity sensor with 0-10,000 uS range, 25 ft. cable
$391.00
In Stock

Global Water’s WQ301 Conductivity Sensor is a rugged and reliable water conductivity measuring device. The WQ301 offers a rapid and non-destructive way to measure the ion content in a solution. The conductivity sensor is molded to 25' of marine grade cable. The conductivity sensor’s output is 4-20 mA with a three wire configuration. The unit’s electronics are completely encapsulated in marine grade epoxy within a stainless steel housing.

  • Output: 4-20 mA
  • Range: 0 to 10,000 μS
  • Accuracy: 1% full scale
  • Maximum Pressure: 50 psi
  • Operating Voltage: 12 VDC (± 5%)
  • Current Draw: 0.8 mA plus sensor output
  • Warm-up Time: 3 seconds minimum
  • Operating Temperature: -40° to +55°C
  • Temperature Compensation: 2% per °C
  • Size of Probe Open Water: 1" dia. x 12" long (3.175cm dia. x 30.5cm) Online: 2.5" dia. x 15.5" long (6.35cm dia. x 39.4cm)
  • Weight Open Water: 8 oz (227 g) Online: 22 oz (624 g)
  • Questions & Answers
    No Questions
    Please, mind that only logged in users can submit questions

    In The News

    What is Conductivity?

    UPDATE : Fondriest Environmental is offering their expertise in conductivity through their new online knowledge base. This resource provides an updated and comprehensive look at conductivity and why it is important to water quality. To learn more, check out: Conductivity, Salinity and TDS . Salinity and conductivity  measure the water's ability to conduct electricity, which provides a measure of what is dissolved in water. In the SWMP data, a higher conductivity value indicates that there are more chemicals dissolved in the water. Conductivity measures the water's ability to conduct electricity. It is the opposite of resistance. Pure, distilled water is a poor conductor of electricity.

    Read More

    Watchful Eyes on One of Maine's Crown Jewels: Jordan Pond

    Formed by a glacier, Jordan Pond is among Maine's clearest, most beautiful bodies of water. It's also a critical freshwater resource, and watchful eyes are protecting it. EM spoke with Dr. Rachel Fowler, Friends of Acadia's aquatic scientist, about her work monitoring Jordan Pond. A postdoctoral research scientist at the University of Maine, she is a member of a partnership among the National Park Service, the University of Maine Climate Change Institute, and Friends of Acadia that began deploying the Jordan Pond buoy in 2013. Canon provided the initial support for the project. Friends of Acadia is a nonprofit organization that supports different projects in the park.

    Read More

    River Management On a Changing Planet

    River management is inherently complex, demanding mastery of constantly dynamic conditions even when the climate is stable. As the climate changes, however, river management will become even more difficult and unpredictable—and old models and techniques are likely to fail more often. Now, researchers from around the world are calling for attention and change to how we manage and model the rivers of the world. Dr. Jonathan Tonkin , a Rutherford Discovery Fellow at New Zealand's University of Canterbury , spoke to EM about why he is arguing that current tools for river management are no longer enough as even historical baseline river ecosystem conditions themselves are changing. Dr.

    Read More