Sequoia LISST-AOBS Super-Turbidity Sensor

The Sequoia LISST-AOBS is a simple, low-cost Super-Turbidity sensor to measure suspended sediment concentration (SSC; mg/l) and turbidity (V).

Features

  • Paired acoustic and optical technologies
  • Near-constant calibration within a factor of two for grain-sizes from 1–500 µm
  • Includes Y-cable providing power and integrated SDI-12 communication to and from both sensors
Your Price Call
Stock Check Availability  

Overview
The Sequoia LISST-AOBS is a simple, low-cost Super-Turbidity sensor that measures suspended sediment concentration (SSC; mg/l) and turbidity (V). The Sequoia Super-Turbidity sensor involves pairing a LISST-ABS with a turbidity sensor using a weight factor, which results in a single, combined output from the two sensors. Once paired, the LISST-AOBS retains near-constant calibration for SSC over a wide grain-size range.

Connectivity
The LISST-AOBS Super-Turbidity sensor is supplied by Sequoia as an integrated and paired turbidity and acoustic sensor with a variety of cabling and data logger options including the X3 data loggers and telemetry systems. The X3 is available for pole-mount deployments with solar charging or connected to the SBP500 submersible alkaline battery pack for subsurface deployments.

Parameters measured

  • Suspended Sediment Concentration (SSC; mg/l)

Concentration range

  • 1 – 30,000 mg/l (LISST-ABS)

Technology

  • Combined optical and 8MHz acoustic backscatter technology
  • Optics per ISO 7027 Turbidity Technique
  • Mechanical wiper for optical backscatter
  • SDI-12 output
  • Sample volume (acoustic): 10mmØ x 15mmL @ 55mm from transducer

Mechanical and electrical

  • 5.72 cm (2.25″) H x 10.16 cm (4″) W x 33.65 cm (13.25”) L
  • Weight 0.7 kg (1.54 lb) in air
  • Transducer: 8 mmØ ceramic
  • Wavelength: 850 nm
  • Power supply: 9-15 VDC (12VDC nominal); 75 mA
  • Depth rating: 100 m
  • Material: ABS plastic and Delrin
  • (1) LISST-ABS acoustic sediment sensor
  • (1) Turbidity Plus turbidity sensor
  • (1) LISST-AOBS Y-cable
  • (1) LISST-AOBS connecting bracket
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Sequoia LISST-AOBS Super-Turbidity Sensor
SEQ-FP-AOBS
LISST-AOBS super-turbidity sensor
Request Quote
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Combating Water Insecurity in Saskatchewan with Real-Time Data

The prairies of Saskatchewan can be described as one of the least water-secure parts of Canada, making water quality monitoring essential for informed resource management in a region already facing water insecurity. While natural physical properties worsen some of the poor water quality conditions in the region, others are connected to land use. Having grown up spending summers on the shores of Lake Huron, Helen Baulch, an associate professor at the School of Environment and Sustainability at the University of Saskatchewan , has always been dedicated to the protection of water resources. Looking back fondly at her childhood playing along the shore, Baulch also recalls the invasion of quagga mussels during her teenage years and watching the lake change as a result.

Read More

Seametrics Turbo Turbidity Logger: Boost your Turbidity Monitoring

The Seametrics Turbo Turbidity Logger is a self-cleaning turbidity sensor capable of internally logging over 260,000 data records. The sensor enables researchers, compliance officers, and contractors to monitor turbidity in various applications, from construction and dredging sites to wastewater effluent.  Due to its narrow width, this device can be deployed in a range of areas, from small well spaces to rivers and streams. The stainless steel housing and built-in wiper allow the sensor to withstand long-term deployments and reduce the need for maintenance trips.  The logger accurately records temperature and turbidity up to a depth of 50 meters.

Read More

Collecting Data at the Top of the World: How Scientists Retrieve Glacial Ice Cores

A helicopter touches down in the small town of Sicuani, Peru, at an elevation of 11,644 feet. Earlier that day, a boxcar brought fuel, drills, food, and other equipment for a glacial expedition. The year is 1979, and glaciologist Lonnie Thompson is preparing to lead a team to the Quelccaya ice cap in hopes of becoming the first scientists to drill an ice core sample from this glacier. The only problem? The glacier is located at 19,000 feet in one of the most remote areas of the world. The helicopter takes off from the town, but the thin atmosphere at that elevation does not allow it to safely touch down on the ice– due to the aircraft’s weight, and it becomes unstable when the air is less dense.

Read More