YSI 6132 Blue-Green Algae Sensor

YSI's 6132 blue-green algae sensor monitors algal populations at natural levels in marine water, providing an early warning for bloom conditions.

Features

  • 6132 BGA sensor is designed for marine (phycoerythrin) environments
  • Optimized for excellent sensitivity for monitoring algal populations at natural levels
  • Insensitive to potential interferences including chlorophyll, turbidity, and dissolved organics
Your Price Call
Usually ships in 3-5 days
YSI
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
YSI 6132 Blue-Green Algae Sensor606132 6132 BGA (phycoerythrin) sensor with self-cleaning wiper
Request Quote
Usually ships in 3-5 days
YSI 6132 Blue-Green Algae Sensor
606132
6132 BGA (phycoerythrin) sensor with self-cleaning wiper
Usually ships in 3-5 days
Request Quote
ImagePart#Product DescriptionPriceStockOrder
YSI 600OMS V2 Optical Monitoring Sonde 600-01 600OMS V2 Sonde with temperature/conductivity sensor
Request Quote
Usually ships in 3-5 days
YSI 6144 Optical Wiper Pad Kit 606144 6144 optical probe wiper pad kit, 20 pack of wiper pad strips
$50.00
In Stock
Bright Dyes Rhodamine WT Dye 106023-01P FWT 25 Rhodamine WT dye, 2.5% active ingredient, 1 pint
$29.95
In Stock
YSI 6625 Optical Wiper Kit 606625 6625 optical wiper kit, 2 pack, for use with YSI 6150, 6136, 6131, & 6132 optical probes
$60.00
In Stock
600OMS V2 Sonde with temperature/conductivity sensor
Usually ships in 3-5 days
Request Quote
6144 optical probe wiper pad kit, 20 pack of wiper pad strips
In Stock
$50.00
FWT 25 Rhodamine WT dye, 2.5% active ingredient, 1 pint
In Stock
$29.95
6625 optical wiper kit, 2 pack, for use with YSI 6150, 6136, 6131, & 6132 optical probes
In Stock
$60.00
Blue-green algae (a. k. a. cyanobacteria) monitoring is of growing interest due to the problems some species can present through the production of toxins and compounds that deteriorate the quality of drinking water and through the formation of blooms. Blue-green algae are of interest for ecosystem studies and monitoring as well, where they may represent the most abundant primary producer. Click on the 6131 Spec Sheet above to learn more about the blue-green algae sensor methodology.

The 6132 blue-green algae sensor is fully compatible with all YSI 6-series sondes equipped with optical ports. YSI's optical sensors use an integrated wiping system to provide anti-fouling in the most hostile environments. Durable mechanical features include a non-corroding titanium wiper shaft, replaceable wiper shaft seal, and a new switch controlled wiper parking system to prevent mis-parking.
  • Range: ~0 to 200,000 cells/mL; 0 to 100 RFU
  • Detection Limit: ~450 cells/mL
  • Resolution: 1 cell/mL; 0.1 RFU
  • Linearity: R2> 0.9999
  • Warranty: 2 years
Questions & Answers
When will the wiper activate?

The wiper activates just before each sample is taken during a long-term unattended study.

How do I install my 6132 sensor?

To install the 6132 sensor, install the probe into the center port, seating the pins of the two connectors before tightening the probe nut to the bulkhead. Do not over-tighten.

Please, mind that only logged in users can submit questions

In The News

Engaging People, Engaging Lakes: How The Public Can Help Aquatic Systems

Jo Latimore’s interest in aquatic ecology dates back to her childhood, spending time at her parents’ North Michigan cabin, exploring the water nearby. Today she is a senior academic specialist, aquatic ecologist, and outreach specialist at Michigan State University in the Department of Fisheries and Wildlife , in her thirteenth year in the position. Latimore’s primary interests include lake appreciation and engagement.  “Most people appreciate our lakes. They like to look at, fish on, and boat on them. However, they don’t necessarily appreciate our lakes as an ecosystem,” Latimore said. “It’s the health of the lakes that lets us use them recreationally.

Read More

Aquatic Systems Connectivity: Finding Relationships Between Waters

An early aquatic science pioneer, Luna Leopold, said that “The health of our waters is the principal measure of how we live on the land.” Determining how the land impacts water quality, however, is complex. There must be an understanding of the flow of materials, organisms, and energy within our waters and how they are connected, or even whether they are connected. Enter the emerging field of aquatic systems connectivity.

Read More

How Green Was My Cyanobacteria: Carbon, Nitrogen, and Phosphorus Cycling in Lakes

Lakes are subject to many forces, large and small, from the climate to the presence or lack of individual chemicals and their movements in the lake system. One of the many forces acting on lakes is bacterial action, which is a major player in phosphorus, nitrogen, and carbon cycling in lake systems. These, in turn, influence eutrophication and water quality in lakes. Trina McMahon, professor of civil and environmental engineering at the University of Wisconsin-Madison , described how bacteria affect cycling of these three major chemical elements in lake systems, and how lake health is impacted. [caption id="attachment_32773" align="alignnone" width="600"] Measuring water clarity in Lake Mendota.

Read More