YSI 6132 Blue-Green Algae Sensor

YSI's 6132 blue-green algae sensor monitors algal populations at natural levels in marine water, providing an early warning for bloom conditions.

Features

  • 6132 BGA sensor is designed for marine (phycoerythrin) environments
  • Optimized for excellent sensitivity for monitoring algal populations at natural levels
  • Insensitive to potential interferences including chlorophyll, turbidity, and dissolved organics
Your Price Call
Usually ships in 3-5 days
YSI
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
YSI 6132 Blue-Green Algae Sensor606132 6132 BGA (phycoerythrin) sensor with self-cleaning wiper
Request Quote
Usually ships in 3-5 days
ImagePart#Product DescriptionPriceStockOrder
Bright Dyes Rhodamine WT Dye 106023-01P FWT 25 Rhodamine WT dye, 2.5% active ingredient, 1 pint
$29.95
In Stock
YSI 6625 Optical Wiper Kit 606625 6625 optical wiper kit, 2 pack, for use with YSI 6150, 6136, 6131, & 6132 optical probes
$59.00
Usually ships in 3-5 days
YSI 600OMS V2 Optical Monitoring Sonde 600-01 600OMS V2 Sonde with temperature/conductivity sensor
Request Quote
Usually ships in 3-5 days
YSI 6144 Optical Wiper Pad Kit 606144 6144 optical probe wiper pad kit, 20 pack of wiper pad strips
$46.00
In Stock
Blue-green algae (a. k. a. cyanobacteria) monitoring is of growing interest due to the problems some species can present through the production of toxins and compounds that deteriorate the quality of drinking water and through the formation of blooms. Blue-green algae are of interest for ecosystem studies and monitoring as well, where they may represent the most abundant primary producer. Click on the 6131 Spec Sheet above to learn more about the blue-green algae sensor methodology.

The 6132 blue-green algae sensor is fully compatible with all YSI 6-series sondes equipped with optical ports. YSI's optical sensors use an integrated wiping system to provide anti-fouling in the most hostile environments. Durable mechanical features include a non-corroding titanium wiper shaft, replaceable wiper shaft seal, and a new switch controlled wiper parking system to prevent mis-parking.
  • Range: ~0 to 200,000 cells/mL; 0 to 100 RFU
  • Detection Limit: ~450 cells/mL
  • Resolution: 1 cell/mL; 0.1 RFU
  • Linearity: R2> 0.9999
  • Warranty: 2 years
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Utah’s Canyonlands Research Center: A Great Study Location for Climate Effects on Ecosystem Processes, Community Dynamics and More

Canyonlands Research Center (CRC) is situated at The Nature Conservancy’s Dugout Ranch , over 5,200 private acres of research study area. One of CRC’s primary roles is to facilitate research and monitoring work of university and federal researchers. CRC is located adjacent to Canyonlands National Park , which extends over more than 337,000 acres of public land. CRC also partners with many organizations, including the Bureau of Land Management, USFS, NPS, USGS, Utah State University, and the Utah Division of Wildlife Resources to identify the most pressing research needs in this region.

Read More

Climate Change Asymmetry Transforming Food Webs

Recent research from a University of Guelph (U of G) team reveals that warmer temperatures caused by climate change are forcing species to alter their behavior, causing food webs in Ontario lakes to transform. As temperatures warm, larger species hunt new prey in deeper waters, changing the ways nutrients and energy flow in lakes and triggering a “rewiring” of food webs. Dr. Timothy Bartley , study lead author and a post-doctoral researcher in the U of G's Department of Integrative Biology , spoke to EM about the work . “I got started on this when I first began graduate school and joined an ongoing project, which was a collaboration with the Ontario Ministry of Natural Resources and Forestry ,” explains Dr. Bartley.

Read More

New Technologies Reducing Uncertainty in Estimation of River Flow

Some of the most interesting data in the world of river and stream monitoring come at times when it's practically impossible to capture—during extreme weather events, for example. Timing alone makes capturing unusual events a challenge, and these kinds of issues have prompted researchers to use classic monitoring data along with new technologies to develop and improve hydraulic modeling for estimating river flows. Steven Lyon , a Conservation Scientist with The Nature Conservancy, Professor at Stockholm University and Associate Professor at The Ohio State University, spoke with EM about the research .

Read More