Extech Desktop Indoor Air Quality CO2 Monitor

The Extech desktop Indoor Air Quality CO2 Monitor measures carbon dioxide, air temperature, and humidity.

Features

  • User programmable visual and audible alarm
  • Maintenance free non-dispersive infrared CO2 sensor
  • Max/min CO2 value recall function
Your Price $327.79
Stock Check Availability  

Overview
The Extech Desktop Indoor Air Quality CO2 Monitor checks for carbon dioxide concentrations through the maintenance-free NDIR CO2 sensor. Indoor air quality is displayed in ppm with good (0 to 800ppm), normal (800 to 1200ppm), and poor (>1200ppm) indications. A programmable, visible, and audible CO2 warning alarm will alert users if extreme readings are detected. Measurement ranges are 0 to 9,999ppm for CO2, 14 to 140°F for temperature, and 0.1 to 99.9% for relative humidity.

Applications
Applications include air quality monitoring in schools, office buildings, greenhouses, factories, hotels, hospitals, transportation lines, and anywhere where high levels of carbon dioxide are generated.

  • CO2 range: 0 to 9,999ppm
  • CO2 resolution: 1ppm
  • Temperature0 range: 14 to 140 °F (-10 to 60 °C)
  • Temp Resolution: 0.1 °F/°C
  • Humidity range: 0.1 to 99.9%
  • Humidity resolution: 0.1%
  • Dimensions: 4.3x4.1x2.4" (110x105x61mm)
  • Weight: 8.1oz (230g)
  • (1) Meter
  • (1) Universal AC adaptor
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Extech Desktop Indoor Air Quality CO2 Monitor
CO100
Desktop indoor air quality CO2 monitor
Your Price $327.79
Check Availability  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Flux towers track CO2 exchange between forests and atmosphere

Determining exchange rates of carbon dioxide between the earth’s forests and the atmosphere is turbulent business. Wind above forest canopies swirls as vortexes of air enter and exit stands of trees.  Across the globe, towers stand among the landscape, with sensors monitoring these eddies for carbon dioxide, water vapor and other gasses.  These so-called “flux towers” collect data on carbon dioxide exchange rates between the earth and atmosphere. Information gathered plays into the debate on the measurable effects of climate change. Carbon dioxide flows between the earth, atmosphere and ocean in an attempt to reach equilibrium. As automobiles and energy production facilities burn fossil fuels, more carbon dioxide joins to the mix.

Read More

Expanding the Port Everglades: Real-Time Monitoring of Water Quality Conditions from Planned Dredging Operation

The Port Everglades in Broward County, Florida, serves large trade vessels and cruiseliners and incoming and outgoing recreational boaters. However, as cargo ships become larger, the port must expand. A dredging project led by the US Army Corps of Engineers will substantially deepen and widen the port's navigation channel to accommodate larger Panamax cargo ships and modern cruise liners. As a result of this project, a large amount of sediment will be displaced into the water column. This suspended sediment may settle outside of the project area, burying benthic organisms like corals, and possibly carrying harmful particulates to other regions. [caption id="attachment_39497" align="aligncenter" width="2560"] A CB-950 and CB-25 deployed on site at Port Everglades.

Read More

It’s Time to React to Water Quality: Proteus Multiparameter Probe aboard NexSens Buoy

Water quality monitoring is essential for safeguarding public health, protecting ecosystems, and ensuring the sustainability of water resources. Contaminants such as industrial pollutants, agricultural runoff, and sewage discharge can severely impact aquatic life and pose serious risks to human health if left unchecked. Traditionally, water quality monitoring has been a slow and labor-intensive process, requiring samples to be collected, transported to a lab, and analyzed—a process that can take days. However, with the advancement of real-time sensor technology, environmental agencies, researchers, and industries can now monitor water quality instantly.

Read More