Hydreon RG-15 Optical Rain Gauge

The Hydreon RG-15 is a high accuracy, maintenance-free optical rain sensor intended to replace conventional tipping buckets.

Features

  • Features nominal accuracy of within 10% compared with tipping bucket
  • Low power consumption makes it well-suited for solar charged applications
  • RS-232 serial communications for configuration and data collection
Your Price $99.00
Stock 8AVAILABLE

The Hydreon RG-15 Solid State Tipping Bucket is a rainfall measuring device intended to replace conventional tipping buckets. The RG-15 is rugged, reliable, maintenance-free and features a nominal accuracy of within 10%. The RG-15 is designed to replace tipping bucket rain gauges in many applications where their maintenance requirements make them impractical.

The RG-15 uses beams of infrared light within a plastic lens about the size of a tennis ball. The round surface of the lens discourages collection of debris, and the RG-15 has no moving parts to stick, and no water-pathways to clog. The device features an open-collector output that emulates a conventional tipping bucket, as well as serial communications that provide more detailed data and allow for configuration of the device.

The RG-15 may be configured through the serial port, or optionally via DIP switches. Power consumption of the RG-15 is very low, and the device is well-suited to solar-power applications. Dip Switches can control the units (inches or millimeters) and resolution (0.01″/0.2mm or 0.001″/0.02mm) of the device. Commands can also be sent via the RS232 serial port to override them.

Nominal Accuracy ±10%1
Input Voltage Range 5-15 VDC 50V surge on J1
Reverse polarity protected to 50V
Alternative
3.3VDC through pin 8 on J2
Current Drain 110 μA nominal. (No outputs on, dry not raining)
2-4 mA when raining
Output NPN Open Collector Output
500 mA / 80V / 300mW Max
Operating Temperature -40°C to +60°C (Will not detect rain when freezing)
Output Resolution 0.01in / 0.2mm
Alternative
0.001in / 0.02mm
RS232 Port 3.3V
Supported Baud Rates 1200, 2400, 4800, 9600, 19200, 38400, 57600

1Field accuracy will vary

Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Hydreon RG-15 Optical Rain Gauge
RG-15
Optical rain sensor with high accuracy
$99.00
8 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Environmental Dredging and Remedial Construction

Though dredging is often painted in a negative light, dredging initiatives and projects are often conducted to improve environments, begin recovery periods for water beds contaminated with toxins, and reinvigorate ecological systems and habitats. Many of the technicians and engineers who plan and execute dredging projects are dedicated to balancing the economic benefits of dredging with protecting the environment. Sevenson Environmental Services Inc.  provides sediment remediation as one of many key services offered to help restore natural environments. Steven Shaw spent more than a decade working as an engineer on various dredging projects before finding his way to Sevenson eight years ago.

Read More

Caring for the Chesapeake: Supporting the Iconic Bay Starts with Good Monitoring Data

The Chesapeake Bay is enormous: the Bay and its tidal tributaries have 11,684 miles of shoreline—more than the entire U.S. west coast. It is the largest of more than 100 estuaries in the United States and the third largest in the world. The Bay itself is about 200 miles long, stretching from Havre de Grace, Maryland, to Virginia Beach, Virginia. But the Chesapeake Bay isn’t just enormous--it’s enormously important. The  Chesapeake Bay Program  reports that its watershed covers about 64,000 square miles and is home to more than 18 million people, 10 million of which live along or near the Bay’s shores.

Read More

Treating Harmful Algal Blooms: A Natural Progression

Some of us happen upon the subject of our life’s work by accident, some of us are born into it, and some of us ease into it over time. For Tom Johengen, Research Scientist for Cooperative Institute for Great Lakes Research (CIGLR) and Director of Michigan Sea Grant , choosing to study Harmful Algal Blooms (HAB) was “a natural progression” from his days as a grad student investigating best management practices for controlling nonpoint source nutrient pollution. “I’ve been the research scientist with CIGLR since my postdoc in 1991, 31 years, and I’ve been the Director of Michigan Sea Grant for the past 3 years. When I began my postdoc with CIGLR we were just starting to study the impacts of the recently invaded zebra mussels.

Read More