Hydreon RG-15 Optical Rain Gauge

The Hydreon RG-15 is a high-accuracy, maintenance-free optical rain sensor intended to replace conventional tipping buckets.

Features

  • Features nominal accuracy of within 10% compared with tipping bucket
  • Low power consumption makes it well-suited for solar charged applications
  • RS-232 serial communications for configuration and data collection
$99.00
Stock 5AVAILABLE

Overview
The Hydreon RG-15 Solid State Tipping Bucket is a rainfall-measuring device intended to replace conventional tipping buckets. The RG-15 is rugged, reliable, maintenance-free and features a nominal accuracy of within 10%. The RG-15 is designed to replace tipping bucket rain gauges in many applications where their maintenance requirements make them impractical.

Design
The RG-15 uses beams of infrared light within a plastic lens about the size of a tennis ball. The round surface of the lens discourages the collection of debris, and the RG-15 has no moving parts to stick to, and no water-pathways to clog. The device features an open-collector output that emulates a conventional tipping bucket, as well as serial communications that provide more detailed data and allow for configuration of the device.

Mechanics
The RG-15 may be configured through the serial port, or optionally via DIP switches. Power consumption of the RG-15 is very low, and the device is well-suited to solar-power applications. Dip Switches can control the units (inches or millimeters) and resolution (0.01″/0.2mm or 0.001″/0.02mm) of the device. Commands can also be sent via the RS232 serial port to override them.

Nominal Accuracy ±10%1
Input Voltage Range 5-15 VDC 50V surge on J1
Reverse polarity protected to 50V
Alternative
3.3VDC through pin 8 on J2
Current Drain 110 μA nominal. (No outputs on, dry not raining)
2-4 mA when raining
Output NPN Open Collector Output
500 mA / 80V / 300mW Max
Operating Temperature -40°C to +60°C (Will not detect rain when freezing)
Output Resolution 0.01in / 0.2mm
Alternative
0.001in / 0.02mm
RS232 Port 3.3V
Supported Baud Rates 1200, 2400, 4800, 9600, 19200, 38400, 57600

1Field accuracy will vary

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Hydreon RG-15 Optical Rain Gauge
RG-15
Optical rain sensor with high accuracy
$99.00
5 Available
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Sargassum Surge: How Seaweed is Transforming our Oceans and Coastal Ecosystems

Until recently, Sargassum –a free-floating seaweed–was distributed throughout the Sargasso Sea , the north Caribbean Sea, and the Gulf of Mexico. But in the space of a decade, this seaweed has, as one scientist remarks , “Gone from a nonfactor to the source of a terrible crisis.” Driven by climate change, anomalous North Atlantic Oscillation in 2009-2010 and a glut of anthropogenic pollutants, sargassum has proliferated. Seasonally recurrent mats as deep as 7m now bloom in the “Great Atlantic Sargassum Belt” (GASB), which covers areas of the Atlantic from West Africa to the Caribbean Sea and Gulf of Mexico. Every year, millions of tons wash up along the shores of more than 30 countries . Dr.

Read More

Great Lakes Research Center: Designing Targeted Monitoring Solutions

According to the National Oceanic and Atmospheric Administration ( NOAA ), the Great Lakes have more miles of coastline than the contiguous Atlantic and Pacific coasts combined and contain 20 percent of the world's freshwater, making it a critical region to protect and conserve. Continuous monitoring and data-informed resource management are key components of managing waters in the region. Hayden Henderson, a research engineer with the Great Lakes Research Center (GLRC), designs and deploys monitoring platforms throughout the Great Lakes. With a background in environmental engineering, Henderson enjoyed the challenge of creating systems and making them work to obtain difficult, remote measurements.

Read More

Monitoring Meadowbrook Creek: Real-Time Data Collection in an Urban Creek

Meadowbrook Creek in Syracuse, New York, has been monitored by Syracuse University (SU) faculty and students for over a decade. Originally established by Dr. Laura Lautz in 2012, the early years of the program focused on collecting grab water samples for laboratory analysis and evaluating the impact of urban land use, human activities, and natural processes on water resources. Tao Wen , an Assistant Professor in SU’s Department of Earth and Environmental Sciences, took over the program in 2020 and upgraded the existing systems to include 4G modems that allowed for real-time data viewing. [caption id="attachment_39339" align="alignnone" width="940"] An overview of the Fellows Ave monitoring station along Meadowbrook Creek.

Read More