Pro-Oceanus Solu-Blu TDG Probe

The Pro-Oceanus Solu-Blu total dissolved gas (TDG) probe can be used for long-term continuous in-situ monitoring to provide reliable dissolved gas pressure measurements.

Features

  • Provides continuous 24/7 TDG monitoring
  • Not affected by increasing hydrostatic pressure
  • Designed for aquaculture, dam spillways, groundwater monitoring, etc.
Your Price Call
Stock Check Availability  

Overview
The Solu-Blu total dissolved gas (TDG) probe can be used for long-term continuous in-situ monitoring to provide reliable dissolved gas pressure measurements. It provides accurate TDG pressure data and is designed for use in aquaculture, dam spillways, groundwater monitoring, and industrial applications. Solu-Blu TDG probe is not affected by increasing hydrostatic pressure. It can be used in a range of liquids ranging from fresh- and salt water to industrial fluids such as oil or hydraulic fluid.

Mechanics
The measurement of all gases dissolved in a liquid is facilitated by a semi-permeable membrane that allows gases to transfer from water into a gas head space where the measurement is made.

For air pressure compensation, the sensor uses a vented cable with a barometric pressure sensor inside the housing. This pressure is then used in calculating the % Saturation. When using the RS-232 signal, both the dissolved gas pressure and the barometric pressure are output in the data string.

Sensor Performance
TDG Pressure Range 800-1300 mbar Absolute
75-150% Saturation
*other ranges available
Accuracy: ± 0.1% (Temperature compensated from 0 to 50º C)
Equilibration rate (t63): Dependent on gas composition
Resolution  0.1 mbar
0.1% Saturation level
Physical
Length 20 cm (8 in)
26 cm with connector
Diameter 5 cm (2 in)
Weight 0.28 kg (0.6 lbs)
Housing Material Acetal Plastic
Depth Rating 0 - 50 meters
Water Temperature -2º to 40º C
Electrical
Input voltage digital: 7-24 VDC
analog: 12-24 VDC
Power consumption 0.04 W (3.5 mA @ 12 V)
Data output RS-232, ASCII format
0-5 V or 4-20 mA
Sample rate 1 second
Questions & Answers
Can the mA output on an analog Solu-Blu TDG probe be changed?
Yes, the sensor mA value can represent dissolved gas pressure, percent saturation, or atmospheric pressure. This is done by connecting the probe through a computer’s serial port and running a terminal program like Tera Term, CoolTerm and more. Once connected through the terminal, you will then be able to change the analog output to the desired format.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Pro-Oceanus Solu-Blu TDG Probe
S3050-3
Solu-Blu total dissolved gas pressure (TDG) probe, 3m cable
Request Quote
Check Availability  
Pro-Oceanus Solu-Blu TDG Probe
S3050-5
Solu-Blu total dissolved gas pressure (TDG) probe, 5m cable
Request Quote
Check Availability  
Pro-Oceanus Solu-Blu TDG Probe
S3050-10
Solu-Blu total dissolved gas pressure (TDG) probe, 10m cable
Request Quote
Check Availability  
Pro-Oceanus Solu-Blu TDG Probe
S3050-20
Solu-Blu total dissolved gas pressure (TDG) probe, 20m cable
Request Quote
Check Availability  
Pro-Oceanus Solu-Blu TDG Probe
S3050-25
Solu-Blu total dissolved gas pressure (TDG) probe, 25m cable
Request Quote
Check Availability  
Pro-Oceanus Solu-Blu TDG Probe
S3050-50
Solu-Blu total dissolved gas pressure (TDG) probe, 50m cable
Request Quote
Check Availability  
  Accessories 0 Item Selected

In The News

Carbon and Nutrient Monitoring in the Great Lakes Using Satellite Observations

Carbon and nutrients are the foundation of lake food webs and play an important role in the chemical and physical processes that shape aquatic ecosystems and various lake dynamics. Studying these cornerstones can help improve understanding of other lake conditions like harmful algal blooms, hypoxia, and phytoplankton community composition. The way in which these characteristics are monitored varies, though many rely on a proxy approach wherein parameters are extrapolated from the measurement of a different parameter. An assistant professor at Cleveland State University, Brice Grunert, is working to improve current strategies and take a satellite approach to monitoring the Great Lakes.

Read More

Restoring North Texas Streams to Historical Flows

North Texas is one of the fastest-growing regions in the state, an area that is expected to face increasing water needs. In order to meet these demands, the Upper Trinity Regional Water District ( UTRWD ) is building Lake Ralph Hall near Ladonia in southeast Fannin County, Texas. The lake has been in the works since 2003, with construction finally beginning in 2021. The population of the UTRWD is expected to grow 5-fold over the next 50 years, leading to increased water use. Ed Motley, Program Manager with the UTRWD stresses that even with conservation and reuse, new sources like Lake Ralph Hall are essential to meeting near-term and long-term water needs to support regional growth.

Read More

Science for Science’s Sake: Monitoring Ocean Energy Availability and Gulf Stream Dynamics 

Scientific research often begins with a question, sometimes driven by a specific goal or application, but many scientists believe in science for science’s sake. Marine environments and physical dynamics like the Gulf Stream are popular fields of research due to their complexity and importance, presenting a unique opportunity to learn more about previously unexplored phenomena. Environmental researchers, in particular, see the value in these ecosystems, but many also grew up with a passion for the natural world, and choosing a field that allows them to interact with and learn about the environment around us is an easy choice.

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout