YSI 1001 pH (ISE) Sensor

The YSI 1001 pH Sensor provides good response times and accurate readings in most environmental waters, including freshwater of low ionic strength.

Features

  • Sealed gel reference eliminates refilling, saves time
  • Carefully designed to perform under all ionic strength conditions
  • Field-replaceable
List Price $213.25
$202.59
Stock More On The Way   

Overview
The YSI 1001 pH sensor features a 'long-life' sealed gel reference, eliminating the need to refill. These sensors have been carefully designed to perform under all ionic strength conditions, from seawater with a conductivity of 53,000 uS/cm, to "average" freshwater lakes and rivers with conductivities of 200 to 1500 uS/cm, to pure mountain streams with conductivities as low as 15 uS/cm, which has historically been the most difficult medium with respect to accuracy, quick response to pH changes, and minimal flow dependence.

  • 1-year warranty
Questions & Answers
What is the operating range for the 1001 pH sensor?
The operating range is the same for the field cable and temperature sensor and is -5°C to 60°C.
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 1001 pH (ISE) Sensor
605101
1001 pH (ISE) sensor, Pro Series
$202.59
More On The Way  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Ocean acidification: University of Washington's giant plastic bags help control research conditions

With oceans becoming more acidic worldwide, scientists are getting creative in designing experiments to study them. For example, one group at the University of Washington is using giant plastic bags to study ocean acidification. Each bag holds about 3,000 liters of seawater and sits in a cylinder-like cage for stability. The group at UW, made up of professors and students, is controlling carbon dioxide levels in the bags over a nearly three-week period, during which they are looking at the effects of increased acidity on organisms living near the San Juan Islands. “These mesocosms are a way to do a traditional experiment you might do in a lab or classroom,” said Jim Murray, professor of oceanography at the University of Washington.

Read More

NOAA Alaska buoy network to monitor North Pacific ocean acidification

National Oceanic and Atmospheric Administration scientists detected signs of ocean acidification in the waters that hold the vulnerable and valuable fisheries of the North Pacific off the coast of Alaska, but they only had a snapshot of the action. “We know that in this place were important commercial and subsistence fisheries that could be at risk from ocean acidification,” said Jeremy Mathis, a NOAA Pacific Marine Environmental Laboratory researcher and professor at the University of Alaska Fairbanks. To understand how ocean acidification affects the North Pacific, NOAA scientists created a mooring network that collects constant in situ data on parameters contributing to acidification. They hope it will reveal seasonal trends and patterns left out by their snapshots.

Read More

Combating Water Insecurity in Saskatchewan with Real-Time Data

The prairies of Saskatchewan can be described as one of the least water-secure parts of Canada, making water quality monitoring essential for informed resource management in a region already facing water insecurity. While natural physical properties worsen some of the poor water quality conditions in the region, others are connected to land use. Having grown up spending summers on the shores of Lake Huron, Helen Baulch, an associate professor at the School of Environment and Sustainability at the University of Saskatchewan , has always been dedicated to the protection of water resources. Looking back fondly at her childhood playing along the shore, Baulch also recalls the invasion of quagga mussels during her teenage years and watching the lake change as a result.

Read More