YSI 5565A Amplified pH/ORP Sensor

The YSI 5565A pH/ORP sensor has an internal, battery-powered pre-amplifier for use in difficult environments.

Features

  • Measure pH quickly and easily with the YSI 5565A sensor
  • Ideal for high static situations, very cold waters, long cable lengths or long field studies where the connector may be subject to moisture
List Price $420.00
Your Price $399.00
In Stock
YSI
Government and Educational PricingGovernment and Educational Pricing
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
YSI 5565A Amplified pH/ORP Sensor655565 5565A amplified pH/ORP sensor
$399.00
In Stock
YSI 5565A Amplified pH/ORP Sensor 655562 5565A amplified pH/ORP sensor & extension adapter
$408.50
Usually ships in 3-5 days
ImagePart#Product DescriptionPriceStockOrder
YSI Probe Guard Extension Adapter 655575 Extension adapter for 556 and Pro Series 1010 & 1020 dual port cable assemblies
$39.90
In Stock
The new YSI 5565A pH and combination pH/ORP sensors have an internal, battery-powered pre-amplifier for use in difficult environments. The amped sensors are approximately 0.75" (1.91cm) longer than the Model 5564 pH or 5565 pH/ORP Sensors. The available extension adapter attaches to the bulkhead so the longer sensors fit in the probe guard. All YSI flow cells work normally with the new sensors.

Advantages include:
  • Elimination of potentially erratic readings in high static environments
  • Improved sensitivity and stability in applications with very cold waters and for applications requiring long cable lengths
  • Applications that require a long duration in the field where there is the potential for exposure of the connectors to moisture
  • Potentially longer life if used and stored properly;> 2 years
  • (1) YSI 5565A pH/ORP electrode
  • (1) Storage bottle with solution
  • (1) Instruction sheet
  • (1) Cleaning certificate
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Ocean acidification: University of Washington's giant plastic bags help control research conditions

With oceans becoming more acidic worldwide, scientists are getting creative in designing experiments to study them. For example, one group at the University of Washington is using giant plastic bags to study ocean acidification. Each bag holds about 3,000 liters of seawater and sits in a cylinder-like cage for stability. The group at UW, made up of professors and students, is controlling carbon dioxide levels in the bags over a nearly three-week period, during which they are looking at the effects of increased acidity on organisms living near the San Juan Islands. “These mesocosms are a way to do a traditional experiment you might do in a lab or classroom,” said Jim Murray, professor of oceanography at the University of Washington.

Read More

NOAA Alaska buoy network to monitor North Pacific ocean acidification

National Oceanic and Atmospheric Administration scientists detected signs of ocean acidification in the waters that hold the vulnerable and valuable fisheries of the North Pacific off the coast of Alaska, but they only had a snapshot of the action. “We know that in this place were important commercial and subsistence fisheries that could be at risk from ocean acidification,” said Jeremy Mathis, a NOAA Pacific Marine Environmental Laboratory researcher and professor at the University of Alaska Fairbanks. To understand how ocean acidification affects the North Pacific, NOAA scientists created a mooring network that collects constant in situ data on parameters contributing to acidification. They hope it will reveal seasonal trends and patterns left out by their snapshots.

Read More

River Management On a Changing Planet

River management is inherently complex, demanding mastery of constantly dynamic conditions even when the climate is stable. As the climate changes, however, river management will become even more difficult and unpredictable—and old models and techniques are likely to fail more often. Now, researchers from around the world are calling for attention and change to how we manage and model the rivers of the world. Dr. Jonathan Tonkin , a Rutherford Discovery Fellow at New Zealand's University of Canterbury , spoke to EM about why he is arguing that current tools for river management are no longer enough as even historical baseline river ecosystem conditions themselves are changing. Dr.

Read More