Extech Temperature PID Controller

The Extech Temperature PID Controller offers Fuzzy Logic PID, auto tuning, and soft start features for the ultimate control.

Features

  • Dual 4-digit LED displays for process and setpoint values
  • One-touch auto tuning for quick setup and stable, precise control
  • Accepts thermocouple and RTD inputs
Your Price $369.00
Stock Check Availability  

The Extech Temperature PID Controller uses Fuzzy Logid PID and soft-start features to protect heaters from cold starts. The PID plus Fuzzy Logic tackles the most demanding applications, eliminating over-shoot, unwanted process fluctuations, and drift. The soft-start feature is ideally suited for processes such as in the Thermo-Plastics industry, where careful and exact slow heating of products is required. 

 

The dual 4-digit LED displays for processes and setpoint values. Programming and navigation are made easy with the user-friendly menus and tactile keypad. The manual mode allows users to override automatic control and drive the controller output higher or lower. The one-touch auto tuning is available for quick set-up and stable, precise control. Two latching alarm relays standard with 8 alarm modes plus advanced timer modes. 

 

The single stage ramp and soak program with ramp-to-setpoint limit can be combined with the soft start feature for critical process demands. The controller accepts thermocouple and RTD inputs. The temperature display is °F or °C selectable, the thermocouple input has 9 selectable types, and the RTD input has 2 selectable types from the display menu without the need for hardware modification. 

  • Type K input temperature range: -58 to 2498°F (-50 to 1370°C)
  • Type J input temperature range: -58 to 1832°F (-50 to 1000°C)
  • Type B input temperature range: 32 to 3272°F ( 0 to 1800°C)
  • Type T input temperature range: -454 to 752°F (-270 to 400°C)
  • Type E input temperature range: -58 to 1382°F (-50 to 750°C)
  • Type R or S input temperature range: 32 to 3182°F ( 0 to 1750°C)
  • Type N temperature input range: -58 to 2372°F (-50 to 1300°C)
  • Type C temperature input range: -58 to 3272°F (-50 to 1800°C)
  • PT100Ω RTD (DIN) temperature input range: -328 to 1652°F (-200 to 850°C)
  • PT100Ω RTD (JIS) temperature input range: -328 to 1202°F (-200 to 650°C)
  • Control/alarm relay: 5 Amp @ 110V, SPST (resistive load)
  • DC current output: 4-20mA (resistive); impedance < 600 ohms
  • Accuracy: thermocouple: ±1.8°F (1ºC); RTD: ±0.36°F (0.2ºC)
  • Sampling time: four samples per second
  • LED display: two 4-digit displays for process value, setpoint, and programming modes
  • LED status: alarm and control output status
  • Control modes: fuzzy logic enhanced three-term PID with auto tune
  • Proportional bandwidth: 0 to 300.0%
  • Integral time: 0 to 3600 seconds
  • Derivative time: 0 to 900 seconds
  • Hysterisis: 0.0 to 200.0 or 0.0 to 2000
  • Cycle time: 1 to 100 seconds
  • Front panel: lexan construction, drip/dust proof; IR rating: IEC IP63
  • Power supply: 90 to 264 VAC; 50/60 Hz (< 5VA power consumption)
  • (1) PID Controller
  • (1) Mounting bracket
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Extech Temperature PID Controller
96VFL11
Controller, PID, 1/4 DIN
Your Price $369.00
Check Availability  

In The News

From Paddles to Phytoplankton: Studying Vermont’s Wildest Lakes

For six months of the year, Rachel Cray, a third-year PhD student at the Vermont Limnology Laboratory at the University of Vermont, lives between a microscope and her laptop, running data. For the other six months, she is hiking and canoeing four of Vermont’s lakes, collecting bi-weekly water samples. Cray studies algal phenology across four lakes in Vermont, US, that have low anthropogenic stress—or in other words, are very remote.  Funded by the National Science Foundation Career Award to Dr. Mindy Morales, the lakes Cray researches part of the Vermont Sentinel Lakes Program, which studies 13 lakes in the area and, in turn, feeds into the Regional Monitoring Network, which operates in the Northeast and Midwest US.

Read More

Reimagining Water Filtration: How Monitoring and Science Enhance FloWater Filtration Systems

Over 50% of Americans think their tap water is unsafe , according to the Environmental Working Group (EWG). Other recent surveys have found that number to be as high as 70% of persons surveyed.  Whether due to increased public awareness of water quality issues or confusion about how municipal water sources are regulated, there is a clear distrust of tap water in the United States. According to industry expert Rich Razgaitis, CEO and co-founder of the water purification company FloWater, this issue creates a damaging cycle. Razgaitis explained that the health and environmental problems associated with contaminated water aren’t the only issues.  As people become increasingly aware that some tap water is unsafe, they resort to bottled water.

Read More

Monitoring New Hampshire’s Aquatic Ecosystems: Continuous Data Collection in the Lamprey River Watershed

New Hampshire’s aquatic ecosystems provide a range of ecosystem services to the state and region. Resources and services like clean water, carbon storage, climate regulation, nutrient regulation, and opportunities for recreation all depend on New Hampshire’s aquatic ecosystems remaining healthy. Jody Potter, an analytical instrumentation scientist at the University of New Hampshire (UNH), is studying these aquatic ecosystems in hopes of developing an improved understanding of ecosystem services and their interactions with climate change, climate variability, and land use changes. [caption id="attachment_39799" align="alignnone" width="940"] Aquatic sensors in the Merrimack River in Bedford, NH, with I-293 in the background.

Read More
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout