Geolux Non-Contact Level Sensors

The Geolux Geolux Non-Contact Level Sensors are advanced contactless radar level meters designed for precise distance measurement from the instrument to the water surface for water level and flood monitoring applications.

Features

  • Contactless water level measurement
  • RS-232, RS-485 Modbus, SDI-12, analog 4-20 mA interfaces in all models
  • Robust, small-size IP68 enclosure
Your Price Call
Stock 1AVAILABLE

Overview
The Geolux LX-80 series of instruments are advanced contactless radar level meters designed for precise distance measurement from the instrument to the water surface for water level and flood monitoring applications.

Mechanics
This functionality is achieved by transmitting an electromagnetic wave in 80 GHz frequency range (W band), and measuring the frequency shift of the electromagnetic wave reflected from the water surface. Instruments are characterised by low power consumption, supported by multiple communication interfaces, compatible with third-party dataloggers, and support remote configuration of all instrument settings over any available digital communication interface. Narrow beam width of only 5° allows for simpler installation, and that nearby structures such as bridge railings or pillars do not interfere with the accuracy of the water level measurement.

General Specifications
Radar Type: W-band 77-81 GHz FMCW radar
Beam Angle: 5°
Detection Distance: 8m / 15m / 30m
Resolution: 0.5mm
Accuracy: +/- 2mm
Sampling Frequency: 1 sample per second
IP Rating: IP68

Electrical & Mechanical
Connector: M12 circular 12 -pin
Input Voltage: 9 to 27 VDC
Power Consumption: 0.36 W; standby 0.15 W; sleep 0.03 W; extended 0.6 W
Max Current: < 470 mA
Temperature Range: -40 °C to +85 °C (without heating or coolers)
Enclosure Dimensions: Φ 65mm x H 78mm

Interface
Serial Interface: 1 x serial RS-485 half-duplex; 1 x serial RS-232 (two wire interface)
Serial Baud Rate: 9600 bps to 115200 bps
Serial Protocols: Modbus, GLX-NMEA
Analog Interface: 4-20 mA
Other Interfaces: SDI-12

Certificates
EN 61326-1:2013
ETSI EN 301 489-1
ETSI EN 301 489-3
EN 62368-1:2014+A11:2007;
EN 60950-22:2017
EN 61010-1:2010
FCC Part 15 class B
ISED RSS211

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Geolux Non-Contact Level Sensors
LX-80-8
Non-contact radar water level sensor, 8m range, 10m cable (mounting bracket sold separately)
Request Quote
1 Available
Geolux Non-Contact Level Sensors
LX-80-15
Non-contact radar water level sensor, 15m range, 10m cable (mounting bracket sold separately)
Request Quote
1 Available
Geolux Non-Contact Level Sensors
LX-80-30
Non-contact radar water level sensor, 30m range, 10m cable (mounting bracket sold separately)
Request Quote
1 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Combating Water Insecurity in Saskatchewan with Real-Time Data

The prairies of Saskatchewan can be described as one of the least water-secure parts of Canada, making water quality monitoring essential for informed resource management in a region already facing water insecurity. While natural physical properties worsen some of the poor water quality conditions in the region, others are connected to land use. Having grown up spending summers on the shores of Lake Huron, Helen Baulch, an associate professor at the School of Environment and Sustainability at the University of Saskatchewan , has always been dedicated to the protection of water resources. Looking back fondly at her childhood playing along the shore, Baulch also recalls the invasion of quagga mussels during her teenage years and watching the lake change as a result.

Read More

Seametrics Turbo Turbidity Logger: Boost your Turbidity Monitoring

The Seametrics Turbo Turbidity Logger is a self-cleaning turbidity sensor capable of internally logging over 260,000 data records. The sensor enables researchers, compliance officers, and contractors to monitor turbidity in various applications, from construction and dredging sites to wastewater effluent.  Due to its narrow width, this device can be deployed in a range of areas, from small well spaces to rivers and streams. The stainless steel housing and built-in wiper allow the sensor to withstand long-term deployments and reduce the need for maintenance trips.  The logger accurately records temperature and turbidity up to a depth of 50 meters.

Read More

Collecting Data at the Top of the World: How Scientists Retrieve Glacial Ice Cores

A helicopter touches down in the small town of Sicuani, Peru, at an elevation of 11,644 feet. Earlier that day, a boxcar brought fuel, drills, food, and other equipment for a glacial expedition. The year is 1979, and glaciologist Lonnie Thompson is preparing to lead a team to the Quelccaya ice cap in hopes of becoming the first scientists to drill an ice core sample from this glacier. The only problem? The glacier is located at 19,000 feet in one of the most remote areas of the world. The helicopter takes off from the town, but the thin atmosphere at that elevation does not allow it to safely touch down on the ice– due to the aircraft’s weight, and it becomes unstable when the air is less dense.

Read More