Geolux Non-Contact Surface Velocity Sensor
Features
- Contactless surface velocity measurement
- RS-232, RS-485 Modbus, analog 4-20 mA interfaces in all models
- Robust, small-size IP68 enclosure
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Geolux Non-Contact Surface Velocity Sensor uses radar technology for providing contactless measurement of velocity for water level, flood, and discharge monitoring applications.
Mechanics
Contactless radar technology enables quick and simple sensor installation above the water surface with minimum maintenance. The radar operates in K-band (24.075 GHz to 24.175 GHz) and provides velocity readings 10 times per second over serial RS-232, RS-485 Modbus, and analog 4-20 mA output. The instrument is easily integrated with third-party dataloggers and all of the settings can be remotely configured. An integrated MEMS sensor is used for automatic angle compensation. Internal vibration monitoring and SNR calculation can be used for measurement quality assessment.
General Specifications
Radar Type: K-band 24.075 GHz to 24.175 GHz Doppler radar, 20 dBm EIRP
Beam Angle: 12° Azimuth; 24° Elevation
Detection Distance: Up to 20m above the water
Speed Range: 0.02m/s to 15m/s
Resolution: 0.001m/s
Accuracy: 1%
Sampling Frequency: 10 samples per second
IP Rating: IP68
Electrical & Mechanical
Input Voltage: 9 to 27 VDC
Power Consumption: 950 mW operational, 85 mW standby
Max Current: < 250 mA
Temperature Range: -40 °C to +85 °C (without heating or coolers)
Device Outer Dimensions: 110mm x 90mm x 50mm
Interface
Serial Interface: 1 x serial RS-485 half-duplex; 1 x serial RS-232 (two wire interface)
Serial Baud Rate: 9600 bps to 115200 bps
Serial Protocols: GLX-NMEA, Modbus
Analog Output: 1 x 4-20 mA
Connector: M12 circular 12-pin
Certificates
EN 60950-1:2006+A1:2010+A11:2009+A12:2011+A2:2013
EN 62311:2008
EN 301 489-3 V2.1.1:2019
EN 301 489-1 V2.2.3:2019
EN 61000-6-2:2019
EN 61000-6-3:2021
EN 6100-6-2:2017
EN 300 440 V2.2.1:2018
EN 62368-1:2014+A11:2017
EN 62311:2008
EN 60529:2000+A1:2008+A2:2014 IP68
FCC Part 15 class B
ISED RSS210
In The News
Wildfires and Wildlife: Relocating Coastal Rainbow Trout to the Arroyo Seco Stream
Human interaction has negatively impacted the hundreds of streams that run through Southern California. Man-made river and stream diversions, channeling, and damming have changed the physical and chemical characteristics of these waterways. In addition to physical impairments, climate change is increasingly impacting the ecosystems of streams. 
 
To evaluate and mitigate these negative impacts, local groups are monitoring the riparian habitats of these streams and are conducting water surveys that document rainbow trout populations and evaluate water quality .
Read MoreBringing Fish Back: Reviving Britain’s Freshwater Habitats with the Wild Trout Trust
Freshwater covers less than 1% of the Earth’s surface but has an outsized impact on global ecosystems, supporting more than 10% of all known species, reports the World Wildlife Fund . Freshwater environments such as rivers and wetlands provide significant scientific, economic, and cultural value. But pressure from climate change, biodiversity loss, and a lack of prioritization in environmental policies mean freshwater habitats are recognized as one of the most threatened in the world–something scientists have dubbed an “invisible tragedy. ” 
 
[caption id="attachment_39210" align="alignnone" width="940"] Remedial works underway to shore up the banks of the River Ecclesbourne.
Read MoreMonitoring and Facilitating Habitat Restoration Efforts in the Great Lakes
While human infrastructure, urbanization, and industrialization have advanced human societies, the natural environment has suffered due to constructed impediments and deteriorating architecture. In order to combat this degradation, habitat restoration programs across the US work to remove impairments and improve damaged waterways. 
 
[caption id="attachment_39162" align="aligncenter" width="940"] Barge electrofishing by state and federal employees prior to habitat restoration on Wiscoy Creek which is a tributary to the Genesee River. (Credit Thomas Hoffman)[/caption] 
 Habitat Restoration Efforts in the Great Lakes 
Tom Hoffman, aquatic habitat restoration biologist in the Lower Great Lakes basin, directs restoration efforts within tributaries to Lake Erie, Lake Ontario, and the St.
Read More