Global Water WE700/WQ101 Temperature Sensor

Global Water's WE700/WQ101 temperature sensor is a rugged reliable temperature measuring device for air or water applications.

Features

  • Sensor output is 4-20mA with a two wire configuration
  • Each sensor is mounted on 25 ft. of marine-grade cable
  • Electronics are encapsulated in marine-grade epoxy with stainless steel housing
Your Price $389.00
Usually ships in 1-2 weeks
Global Water
Free Lifetime Tech SupportFree Lifetime Tech Support
Free Ground ShippingFree Ground Shipping
ImagePart#Product DescriptionPriceStockOrder
Global Water WE700/WQ101 Temperature SensorDA0000 WE700/WQ101 temperature sensor, 25 ft. cable
$389.00
Usually ships in 1-2 weeks
ImagePart#Product DescriptionPriceStockOrder
Global Water Extra Cable DH0000 Extra sensor cable, priced per foot
$2.00
Usually ships in 1-2 weeks
Global Water WE770 Solar Radiation Shield EG0000 WE770 solar radiation shield
$261.00
Usually ships in 1-2 weeks
Global Water EZ100 LCD Sensor Display GA0000 EZ100 LCD sensor display, battery powered
$522.00
Usually ships in 1-2 weeks
Global Water EZ100 LCD Sensor Display GB0000 EZ100 LCD sensor display, external VDC power
$522.00
Usually ships in 1-2 weeks
Global Water GL500-2-1 Data Logger FR0000 GL500U-2-1 data logger, USB
$440.00
Usually ships in 1-2 weeks
Global Water's WE700/WQ101 temperature sensor is a rugged reliable temperature measuring device for air or water applications. The probe is mounted on up to 500 ft. of marine grade cable and has a two-wire configuration for minimum current draw. The unit's electronics are completely encapsulated in marine grade epoxy within a stainless steel housing.
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

Cooling water from Northeast U.S. power plants keeps rivers warmer

Rivers are a vital cooling source for power plants, but high-temperature water returned to rivers from the plants may detrimentally heat rivers and change aquatic ecosystems, according to a recent study. Scientists from the University of New Hampshire and the City College of New York gathered federal data on power plants and river systems and linked up river flow and heat transfer models to figure out just how hot rivers get in the northeastern U.S. They found that about one third of heat generated in thermoelectric power plants in the Northeast is drained into rivers via used cooling water. Just more than a third of the total heat generated at plants in the Northeast is converted directly into electricity for consumer use.

Read More

Restoring Native Brook Trout in North Carolina

The North Carolina Wildlife Resources Commission ’s Inland Fisheries Division has been working to restore brook trout in the state. Coldwater research coordinator Jacob Rash, who works with the brook trout team technicians on this project, spoke to EM about the work. “In North Carolina, brook trout are our only native trout species,” explains Mr. Rash. “With that come biological and ecological considerations as well as cultural importance. A lot of folks here grew up fishing for brook trout with their relatives, so it's an important species that we work to try to conserve. We've done quite a bit of work to figure out where those brook trout populations are and what they are, in terms of genetics.

Read More

Robotic Fish May Reduce Live Fish Testing Near Hydroelectric Plants

Each year in Germany, as many as 450,000 living fish undergo live animal experiments to test how fish-friendly hydroelectric power plants in the country are. The idea is to discover how readily the fish can move through hydroelectric turbine installations in order to ultimately reduce mortality rates. Of course, subjecting live fish to a potentially deadly test to save others is a bitter irony. And it's one that a team of scientists from the RETERO research project hopes to eventually mitigate with a robotic fish for testing. EM corresponded with Olivier Cleynen and Stefan Hoerner from the University of Magdeburg about the complex flow conditions that set the parameters for the project.

Read More