LI-COR Underwater PAR Sensor Lowering Frame

LI-COR Underwater PAR Sensor Lowering Frame

Features

  • Stability for proper orientation of sensors
  • Minimizes shading effects
  • Lower mounting ring for stabilizing weight attachment
List Price $$$$$
Your Price Check Price
Usually ships in 3-5 days
LI-COR
Free Lifetime Tech SupportFree Lifetime Tech Support
ImagePart#Product DescriptionPriceStockOrder
LI-COR Underwater PAR Sensor Lowering Frame2009S Lowering frame for LI-COR underwater PAR sensors
Check Price
Usually ships in 3-5 days
The 2009S LI-COR Underwater PAR Sensor Lowering Frame provides for the placement of two underwater cosine sensors, one each for downwelling or upwelling radiation, or a single LI-193SA Spherical Quantum Sensor. The 2009S provides stability for proper orientation of the sensor(s), minimizes shading effects, and features a lower mounting ring for stabilizing weight attachment if necessary.
  • Construction: Anodized aluminum
  • Size: 51.4 L (20.0") x 35.6 cm W (14.0")
  • Weight: 327g (0.72 lbs)
Questions & Answers
No Questions
Please, mind that only logged in users can submit questions

In The News

LI-COR PAR sensors detect light waves to aid aquatic ecosystem research

Understanding how the sun’s rays fuel phytoplankton or plant growth may prove valuable to understanding an aquatic ecosystem. A pair of sensors from LI-COR can help researchers studying algal blooms and aquatic vegetation by measuring how much light enters underwater environments. Sitting below the surface, the LI-192 flat-lensed photosynthetically active radiation sensor and the LI-193 spherical PAR sensor measure light waves striking their silicon photovoltaic detectors.  They sense light wavelengths between 400 and 700 nanometers, which is the ideal range for photosynthesis. Dave Johnson, a LI-COR product manager for the LI-190 series, said the sensors’ individual designs make them ideal for different applications.

Read More

Ohio State greenhouse nurtures 'fruit fly of the plant world'

The Arabidopsis Biological Resource Center at Ohio State University was established in 1991 with funding from the National Science Foundation. Part of the center’s job is to meet demand for seed of the arabidopsis plant, which is widely used for genetic modeling. “A lot of the plants we’re growing are for seed production,” said Joan Leonard, greenhouse coordinator. “Arabidopsis is a good example. We call it the ‘fruit fly of the plant world,’ and it takes about six to eight weeks to go from seed to plant.” Arabidopsis is one of the many plants that will benefit from a new LI-COR PAR sensor being installed on campus. It will help manage light schedules for greenhouse plants.

Read More

Robotic Fish May Reduce Live Fish Testing Near Hydroelectric Plants

Each year in Germany, as many as 450,000 living fish undergo live animal experiments to test how fish-friendly hydroelectric power plants in the country are. The idea is to discover how readily the fish can move through hydroelectric turbine installations in order to ultimately reduce mortality rates. Of course, subjecting live fish to a potentially deadly test to save others is a bitter irony. And it's one that a team of scientists from the RETERO research project hopes to eventually mitigate with a robotic fish for testing. EM corresponded with Olivier Cleynen and Stefan Hoerner from the University of Magdeburg about the complex flow conditions that set the parameters for the project.

Read More