Onset HOBO Pendant Event Data Logger
Features
- Records tips or momentary contact closures and temperature
- Event-based data storage provides detailed data and efficient memory usage
- Stores over 16,000 tips (160 in. of rainfall with a 0.01 in. rain gauge)
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Onset HOBO Pendant Event Data Logger accurately measures rainfall. The event logger determines rainfall rates, times, and duration after deployment with most standard tipping-bucket rain gauges. Efficiently gather and store momentary contact events and temperature data.
Event Data
Gain access to detailed event data with the Onset HOBO Pendant Event Data Logger accurately measures rainfall. The event logger determines rainfall rates and time. Event data is only stored when it happens for better memory usage. Use a solar radiation shield for accurate temperature measurement in sunlight applications. See RS1 Solar Radiation Shield (assembly required) and M-RSA (pre-assembled) Solar Radiation Shield.
External Event Input
Event sensor: Two-wire interface suitable for measuring mechanical and electrical contact closures
Maximum input frequency: 1 Hz (1 pulse per second)
Lockout time: 500 ms
Minimum pulse width: 1 ms (hardware debounce)
Input/output impedance: 100 kΩ
Edge detection: Falling edge, contact closure, or Schmitt-trigger buffer
Preferred switch type: Normally open. For maximum battery life, the event input should be used with its preferred switch type. The logger will work with normally closed switches, but battery life will be compromised.
Open circuit input voltage: Battery voltage; nominally 3.0 V
Maximum input voltage: Battery voltage + 0.3 V
User connection: 24 AWG, 2 leads: white (+), black (-)
Temperature Measurement
Measurement range: -20° to 70°C (-4° to 158°F)
Accuracy: ± 0.53°C from 0° to 50°C (± 0.95°F from 32° to 122°F), see Plot A. A solar radiation shield is required for accurate temperature measurements in sunlight.
Resolution: 0.14°C at 25°C (0.25°F at 77°F), see Plot A
Drift: Less than 0.1°C/year (0.2°F/year)
Response time: Airflow of 2 m/s (4.4 mph): 10 minutes, typical to 90%
Logger
Time accuracy: ± 1 minute per month at 25°C (77°F), see Plot B
Operating range: -20° to 70°C (-4° to 158°F)
Environmental rating: Tested to NEMA 6 and IP67; suitable for deployment outdoors
Drop specification: 1.5 m (5 ft) onto concrete
NIST traceable certification: Available for temperature only at additional charge; temperature range -20° to 70°C (-4° to 158°F)
Battery: CR-2032 3V lithium battery; 1 year typical use
Memory: 64K bytes
Materials: Polypropylene case; stainless steel screws; Buna-N o-ring; PVC cable insulation
Weight: 50 g (1.7 oz.)
Dimensions: 71 x 33 x 23 mm (2.8 x 1.3 x 0.9 inches); 1.8 m (6 ft) cable
- HOBO Pendant Event Data Logger
- Tie wraps
- Adhesive mount
In The News
Have You Heard? AI Buoys Revolutionizing Marine Mammal Monitoring in Whangārei Harbor, New Zealand
In one history, Whangārei Harbor, nestled in the lush hills of New Zealand’s North Island, gets its name from the Māori, “waiting for the breastbone of the whale.” It seems fitting, then, that it’s now home to state-of-the-art acoustic monitoring buoys listening for marine mammals around the clock. 
 
In September 2024, a team from Auckland-based underwater acoustics firm Cetaware Ltd installed NexSens buoys in Northport, a major commercial port at the entrance to the Whangārei Harbor. 
 
The first buoys to be installed by Cetaware in a permanent setting running 24/7, they use real-time artificial intelligence (AI) models to passively sense Delphinidae–from common dolphins to orcas. 
 
Dr.
Read MoreWildfires and Wildlife: Relocating Coastal Rainbow Trout to the Arroyo Seco Stream
Human interaction has negatively impacted the hundreds of streams that run through Southern California. Man-made river and stream diversions, channeling, and damming have changed the physical and chemical characteristics of these waterways. In addition to physical impairments, climate change is increasingly impacting the ecosystems of streams. 
 
To evaluate and mitigate these negative impacts, local groups are monitoring the riparian habitats of these streams and are conducting water surveys that document rainbow trout populations and evaluate water quality .
Read MoreBringing Fish Back: Reviving Britain’s Freshwater Habitats with the Wild Trout Trust
Freshwater covers less than 1% of the Earth’s surface but has an outsized impact on global ecosystems, supporting more than 10% of all known species, reports the World Wildlife Fund . Freshwater environments such as rivers and wetlands provide significant scientific, economic, and cultural value. But pressure from climate change, biodiversity loss, and a lack of prioritization in environmental policies mean freshwater habitats are recognized as one of the most threatened in the world–something scientists have dubbed an “invisible tragedy. ” 
 
[caption id="attachment_39210" align="alignnone" width="940"] Remedial works underway to shore up the banks of the River Ecclesbourne.
Read More