Sequoia LISST-ABS Acoustic Sediment Sensor
Features
- Uses acoustic backscatter to measure the concentration of particles suspended in water
- Wide dynamic range of concentrations from 1mg/L to 30 g/L
- Plug-and-play interface with X2, X2-SDL, and X2-CB data loggers and telemetry systems
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Sequoia Scientific LISST-ABS is a single-point acoustic sediment sensor, designed to provide higher quality data than optical turbidity sensors. The LISST-ABS internally measures the Attenuation Corrected Backscatter (ACB). The ACB value is converted to an Uncalibrated Concentration (Cu) and then output. To convert the Uncalibrated Concentration to sediment concentration, a simple multiplier is required. The multiplier, or Cal Factor, is dependent on the specific type and size of sediment being measured. When a user recalibrates an instrument, this multiplier is updated.
Mechanics
The Sequoia Scientific LISST-ABS employs a high frequency of 8 MHz. Calibration of backscatter signal strength with sediment concentration remains nearly constant over a wide particle size range, ~40-500 microns. Over this size range, the Sequoia Scientific LISST-ABS calibration changes only about ~±30%. In contrast, over this same size range, optical turbidity sensors would change calibration by ~ ±600% over its mean value.
Remote Monitoring
The LISST-ABS sensor offers a plug-and-play interface to the full line of NexSens X2 data loggers and telemetry systems. The X2 is available for pole-mount deployments with solar charging near streams and rivers; the X2-SDL includes an integrated 16 D-cell alkaline battery pack for subsurface deployments; and the X2-CB is designed for integration on CB-Series data buoy platforms.
- Frequency: 8 MHz
- Sample Volume: 10mm dia x 15mm L (located 5.5 cm in front of sensor)
- Resolution: 0.5 % of reading
- Range: 1 mg/L to 30 g/L (7 micron dust) or <20 g/L (200 micron sand)
- Calibration: Recommended with sediment samples
- Sensor Diameter: 2.00 in (5.08cm)
- Length: 13.25 in (33.65cm)
- Weight: 1 lb. (0.5Kg) in air; 0.5 lb. (0.22Kg) buoyant in water
- Transducer: 8mm dia, ceramic
- Power Supply: 9 to 18 VDC, 100 mA
- Maximum Depth: 100m
- Material: ABS Plastic
- Connector Type: Impulse MCBH-8-MP-SS
- Power on LED: Green, blink on update
- Sample Update Rate: 1Hz (average of 1000 measurements)
In The News
Data-Driven Decisions: Tracking Sediment during the Klamath Dam Removal
The largest dam removal in U.S. history, the deconstruction of the Klamath Dam is slated to begin this summer. The project includes four dams along the Klamath River with the first and smallest dam, Copco #2, scheduled for removal first. As each of the dams are torn down, scientists and consultants will keep a close eye on the state of the Klamath River downstream to assess the impact of undamming the river. 
 
Shawn Hinz, managing partner and environmental toxicologist with Gravity Consulting , has been involved with the Klamath Dam project for over a decade. Hinz was a part of these earlier steps, representing the academic stakeholder position as a graduate student sitting on a board of other stakeholders.
Read MoreFrom the Tap: Source Water Monitoring for Public Health
In regions with historically secure access to clean drinking water, few think about the work that goes into ensuring that the water they fill their cups with is safe. In reality, millions of dollars are invested in the infrastructure, equipment and teams involved in converting source water into drinking water. 
 
While all the work that goes into providing clean water often goes unnoticed, analysts like Michele Gilkerson, a water research analyst with the City of Columbus Division of Water, know exactly how much goes into securing safe water for millions of people. 
 
Gilkerson started with Battelle Memorial Institute in 1991 in their water ecology section. There, she saw how interesting source water monitoring could be, even though it isn’t often spotlighted in the environmental sector.
Read MoreChoosing the Right Water Quality Monitoring Systems Is Crucial for Stantec Inc.
Data is king when it comes to water quality monitoring. It is not merely the type of data being collected that matters but also how that data is stored, processed and presented. When Joseph Kamalesh, a project manager with Stantec Consulting Services Inc. , needs to find the right equipment for large client-based projects, he knows to keep these factors in mind. 
 
Joseph has a background in water quality and water flow monitoring instrumentation, which he continues to focus on at Stantec. During college and his early career, Joseph gained experience with water instrumentation, consisting primarily of on-site wastewater sampling and sampling small systems.
Read More